YK 004.414.23.042

I.D. Perepelytsya, G.M. Zholtkevych

V.N. Karazin Kharkiv National University, Kharkiv

ON SOME CLASS OF MATHEMATICAL MODELS FOR
STATIC ANALYSIS OF CRITICAL-MISSION ASYNCHRONOUS SY STEMS

Abstract. A mathematical model of asynchronous softwaresys considered in the paper. This model bases
on the notion abstract finite pre-machine which grafizes the notion abstract finite automaton. émirast to gen-
erally accepted models the model proposed in tipeipmakes possible to specify more complex systdewviour
than it is provided by finite automata models. $jpeEdly, live-lock anomaly can be specified usithg notion pre-
machine. Authors adduce the criterion of live-legkstence and illustrate it by example.

Keywords: critical-mission software, asynchronous softwargtes, static analysis, live-lock, queue explosion

1. Introduction Conponent |

Nowadays nature of a developing cycle for infor

. ys. ping cy Di spat cher >
mation processing systems (IPS) has changed ess
tially. Now practically there exist no software mcts
that start from scratch. As a rule modern develagme

Queue

+append(e: Event)
>—— +cl ear ()

n

processes for IPS are processes of systems reenging - aolive Handl er

ing. Therefore, architectural solutions for modéPs +per f orn(q: Queue) : Handl er
should provide flexibility of such systems withdoss

of their integrity. Fig. 1. Static model of a software component

As known, integrity for software system is sup €SS of software development processes, so thisr pap
ported by interaction of flows. Each of the flows-b deals with some theoretical and applied questidns o
longs to only one of two classes: the class of robnt developing software tools for static analysis ompo-
flows and the class of data flows [1]. nents of asynchronous systems.

Control flows are realised by transfer of control 2. Modelling components of asynchronous
from one software component to another. This mecha-

. e . software systems
nism results in high coupling of software composent
[2]. High coupling opposes extracting a softwareneo In this section we specify the generalized static
ponent for its modification and testing outsidetbé model of a software component in the UML notati@n [
system. So to increase flexibility of the systene@an 8] (cf. fig. 1). This model specification bases the
try to decrease system coupling. suggestion that the component has asynchronousfype
To realise this idea developers use architectur,

styles that consider a system as a complex of gmugp | ! Nteracti on

ent components with an asynchronous interactioe, (Sq [t heDi spat cher : t heQueue: aHandl er -
for example event-driven architecture [3], messagq Di spat cher Queue Handl er
[}

driven architecture [4], data-driven architecturg)], [! !

. 1 1

service-oriented architecture [6] and so on). Usthie event append(event) | !

approach provides coupling decreasing but increasi > I

complexity of data flows between components is pay per f or ('t heQueue) : rs

ment for this. hnd X 10
Let's stress that systems of all enumerated abo €-==-=----- 1T

kinds include architectural layers which realise th| [opt | [not hnd.isNull()]
event-driven strategy. active: =hnd
Therefore development models and methods f ' 1
static analysis of event-driven systems is actuablem clear() —
in the field of software engineering. :
Developers of critical-mission software system n !
are especially in need of software tools for stogythe

behaviour of such systems and ensure the trustiworth

Fig. 2. Dynamic model of a software component

interaction with other parts of the software system wiO=* such thatT(q,w)#0 and T(qu)=0 if
So, each component of the such kind has the next

principal units: the dispatcher, the queue, andlless. udz" andw =uv for somevOs";

Their responsibilities and intaraction is showrfign 2, - JumF(q q):{ nal Ou([QII '(' 0 W: '§1

namely,

! .) As shown in [11], these languages play a signifi-
- theDi spat cher provides collaboration between

cant part to study pre-machines.

old units; _ _ Each among these languages is a prefix code.
- t heQueue is used for accumulating received events; This property is the basic for such languages.
- ObjeCtS namedHandl| er prOVide handling of events Examgle 1.Consider a System of two processes
queue. _ o éPl and P,) that concurrent try to use some critical
Methods which are referenced on in fig. 1 shoul

fesource with exclusive access. To balance progsesse
access to the resource assigning dynamic priorisies
used. Letr; (r,) be an event “ProcesB (P,) has

requested access to the resource”. To decide either
process P1 or process P2 has priority we use tke ne

be realized to support the next functionality:

- Queue: : append(e: Event) appends an event
into the events queue;

- Handl er: : perforn{qg: Queue) provides spe-
cific handling of the events queue;
- Queue: : clear() clears the events queue afterSOIVer which is presented in fig. 3.

successful handling. tl N =0
3. Pre-machine as mathematical model of [n=0] [No process | [n=0]
software component | has priority |
Mathematical model of the software component g
with described behaviour was introduced in [10]- De r2/n++ ri/n++
tailed mathematical background one can find in [11] ri/n- - r2/n- -
. . o , has P, has)
[11] authors refined this modell. pr| ority priority C
We shall use the next notion. Y 17 e+
For setsX and Y by [X - Y] the set of total n>0] [n>0]
maps fromX into Y is denoted, and byX - Y) the ©

Fig. 3. Component for assignment of priorities
Let's describe this state/chart machine [7, 8] hbighs
finite pre-machine:
Q={do, c, G} , where
g is the state “no process has priority”;

set of partial maps fronX into Y is denoted.

In the last case we shall use the notati¢r) =0
to denote thatx is not lie in the domain of and the
notation f (x)#0 to denote thatx lies in the domain
of f .

Definition 1. Let Q be a finite set of stateg, be
a finite alphabet of events[be a transition function

which is an element O(QXZD—> Q), then the triple

g, is thee state P, has priority”;
g, is thee state P, has priority”.
= ={r,ry} , where
r, is the event “ProcesB; has requested access

=(Q,Z,T) is called an abstract finite pre-machine if to the resource”:

the next conditions hold: r, is the event “ProcesB, has requested access
1) O0#T(qe)=q forall qOQ; to the resource”.
2) for any qO0Q, u,vOz"” from T(qu)#0 and Jumg @, @)= 5;

T(T(q,u),v)20 it follows that T(q,w)#0 and ume(@, @)= 1

T(q,w)=T(T(q u), v) wherew =uv; Jumg(g, @)=

{wmz 9 (w)=45()
w)< 2 (W), k=1...| W~}

3) for any qOQ, uvOs" and w=uv from
T(qu)20 and T(gw)zO it follows that

T(T(q.u),v)20 and T(T(q,u),v)=T(q w). Jumr(%, q))—
T | {tz 1% (w) = éNZ()
With a finite pre-machineP=(Q,Z,T) one can 3 ,
associate the next languages over the alphabet X)< i v V\r_ }’

- for qOQ the languageOut(q) is the set of words

where s (w) is equal to a number of detecting thelTheorem 1.Let P=(Q,Z,T) be a finite pre-machine

eventr among the firskk events.
As one can check all languages:

- Out(gp)=Jumgf @, QU Junfp g 4,
- Out(q)=Jum g @),

- Out(p) = Jumg g, @)
are prefix codes.

4. Pre-machine’s live-lock recognizing

Generalisation finite machines, based on formalis-

ing model of a data accumulation process, permnits
model anomalies which are classified as live-locks.

with Q as the state sety as the alphabet, and
TO(QxZ - Q) as the transition functionP has no

live-lock in a stateq Q if and only if the next condi-
tions hold:

1) the setOut(q) is finite;

2) equality (2) holds

1

wOut(g)
We don't know any elementary proof of Theo-
tem 1. Its proof, which we have found, is simplel an
smart, but it bases on knowledge of some facts from

In our case live-lock is a condition when a procesgeneral topology (cf. for example [9]).

cannot leave the current state because it receidds
tional external requests for service during hargline
current queue of requests. Live-lock leads to tifece

of queue's explosion. It means that the queue ef un

served requests is increasing unbounded.
Let’s give the formal definitions.

We consider some finite pre-machife=(Q,Z,T)
where as usual by) denote its state set, by denote
its alphabet, and by 0(QxZ - Q) denote its transi-
tion function.

For eachqdQ denote byOut(qg) the set of all

words wOX* such that
1) T(q,w) is defined;

2) T(q,u) is undefined ifud=" and w=uv for

somevOz*.

Example 2.This example deals with live-lock
analysis of the finite pre-machine which described
Example 1.

Easy to see that the stadig satisfies the hypothe-
sis of Theorem 1, so live-lock is impossible irsthtate.
But in the statex; and g, live-lock is possible. For
example the sequence®’ and r° satisfy to Defini-
tion 2 for statesy; and g, respectively.

In this case to evaluate probability of live-loak i
statesqg, and g, is very interest. Consider the case of

the stateq; .

To do it note that for each word/ 0{r;,r,}" we
can associate uniquely the finite sequencg...,x,
where n is length of the wordw , x; =1 if the i-th

event inw equalsr, and x; =—1 x; =1 if the i-th

By >® denote the set of all right-side infinite se-event in w equals . SO § =X +...+ X, equals

guences.
For the wordw X" by C(w) denote the subset

of £* such thata 02 is a member ofC(w) if and

only if for someBOZ® the equalitya =wp holds.

It's evident thatC(wy;)NC(w,)=0 if and only
if wy is not non-empty prefix ofv, and vice-versa.

In the case whemw, is some non-empty prefix of

w, we have the inclusionC(w,) 0 C(wy) .

Definition 2. Let q0Q then we shall say that live-lock

is possible in state q if there existg1=* such that for

any wO=* which is a prefix ofa condition (4.1)
holds:

T(g,w) is undefined. (1)

Really, under conditions of Definition 2 there ex-

ists a sequence of events, namely the sequancaich
that any its initial part cannot ensure any possibiior
the system to go out from the stgte

counter value in the statg;, when k=1,...,

w. It is

evidently, that fork =1,...,

w| inequalitiess, > 0 pro-
vides that the pre-machine is in the stajg Using

technique from [13, ch. 3, § 1] one can obtain rib&t
asymptotic estimate
1

Pr(Wn(ql))~\/ﬁ !

where W, (q,) is the condition “the pre-machine is in

n—- oo

. ®3)

the stateg, for the lastn steps”.
The case of the stat, gives the same estimate:

Pr(W, (0p)) ~ —=)

~ n—- oo
where W, (q,) is the condition “the pre-machine is in

Jam’

the stateg, for the lastn steps”.

So probability of live-lock equals zero.

From formulae (3) and (4), unfortunately, it is-fol
lows that mean pre-machine residence time in eéch o
the statesy; and g, is not bounded.

5. Conclusion

13.Feller W. An introduction to probability theognd its

applications, & ed., Vol. 1/ W. Feller. — New York Chichester

Brisbane Toronto: John Wiley & Sons, 1970. — 493 p.

Problems of mathematical modelling of the impor-

tant class of software systems, namely, asynchsnou

software systems were considered in the paper.

Penenzent: n-p Ttexd.. Hayk, mpod. B.M. Konopes,
MPOBIHUI HAYKOBUiA criBpoOiTHHK, CepTudikaiiifHuii HeHTp
ACY, JlepxaBHa iHCIEKILis SASPHOTO PEryIIOBaHHs YKpaiHH,

Authors generalized the commonly accepted that,,is

based on the notion abstract finite machine and tse
notion abstract finite pre-machine.

Astop: JKOJITKEBHNY I'puropiii Mukoaaiosuy
Xapxiecvkuil Hayionanvuuil ynieepcumem imeni B.H. Kapa-

The example of using pre-machines for mOde”ingina, Xapxie, Ooxmop mexHiuHUX Hayk, npogecop, Oekau
some program component, the solver for assignmenxanixo-mamemamuunozo gaxyromemy, 3agioysau xagedpu

priority, is described in the paper.

This generalization permits to model such anoma

as live-lock.

meopemuyHoi ma npuKiaoxol iHpopmamuxu.

|§a6. men. — 707-53-25, E-mail: g.zholtkevych@gmail.com

Asrop: IIEPEIIEJINIIS IBan IMmuTpoBuY

Theorem 1 establishes the criterion for the absendepxiscexuii nayionanvhuii ynisepcumem imeni B.H. Kapa-

of live-lock in the pre-machine state.

For the pre-machine from the example live-loc

possibility was analysed. For states in which livek is
possible probability of it was estimated. Authofs- o
tained the exact estimate. It has ensured to éshathiat
mean residence time in the state does not exist.

Bibliography

1. Wirth N. Algorithms + Data Structures = Programs\.
Wirth. — Prentice-Hall, 1975. — 366 p.

2. Faison T. Event-Based Programming: Taking Eventhe
Limits / T. Faison. — Apress, 2006670 p.

3. Chandy M.K. Event-Driven Applications: Costs, Bitse
and Design Approaches / M.K. Chandy // Gartner Apilbn
Integration and Web Services Summit, San Diego, JUAe
2006. — San Diego, CA: California Institute of Teclugy,
2006.

4. Curry E. Message-Oriented Middleware / E. Curriig-
dleware for Communications, ed. Q.H. Mahmoud. — G¥seh
ter, England: Wiley & Sons, 2004. — P. 1 — 28.

5. Treleaven P.C. Data-Driven and Demand-Driven Caiepu
Architecture / P.C. Treleaven, D.R. Brownbridge, R#®p-
kins. —J. ACM Comp. Surv. — V. 14, N 1, 1982. -3P- 943.
6. Bell M. Service-Oriented Modeling: Service Asay De-
sign, and Architecture / M. Bell. — Hoboken, NJ: &Vil&
Sons, 2008. — 366 p.

3ina, Xapkie, acnipanm xagedpu meopemuunoi ma npukiao-
Hol inghopmamuku.

06. men. — 707-55-35, E-mail: ivanperepelytsya@gmail.com

IIpo oauH K1ac MaTeMATHYHUX MOJeJIeil CTATHYHOT O
aHaJIi3y ACHHXPOHHHMX CHCTeM KPHTHYHOI'O IPU3HAYEHHS
I''M. XKonrtkesuu, [.J1. [lepenenuus
VY crarti po3rIIHYTO MaTeMaTHYHy MOJCIb ACHHXPOHHUX
IporpaMHUX cucTeM. Ll Monenp cHUpaeTbest Ha ITOHATTS
CKiHUeHOi aOCTpPaKkTHOI IepeA-MAaIlMHU, SKE Y3araJbHIOE
MOHSATTS aOCTPAaKTHOTO CKiHYeHOro aBTroMmary. Ha Bimminy Bix
3araJlbHONPUMHATUX MOJENIEH MOJENb, 3allpOIIOHOBaHa B
po6oTi, 103BOJIsIE ONMUCYBATH OIBLI CKIIAIHY MMOBEAIHKY CHC-
TEMU B MOPIBHSHHI 3 MOJEISIMH CKiIHYEHHX aBTOMATIiB. 30K-
pema, aHoMalisl «aKTMBHUH TYNMHK» MOXKe OyTH MPOMOIEbO-
BaHa B TEPMiHaX CKIHYCHOI Iepe-MaIlHI. ABTOPH HABOISTh
KpUTepiii BUHHMKHEHHS aKTHBHOTO TYIHKY Ta LIOCTPYIOTh

HOTo 3aCTOCYBaHHS HA IIPUKIAJI.

KnrouoBi ciaoBa: mporpamue 3a0e3neueHHS KPUTHIHOTO
NPHU3HAYCHHS, ACHHXPOHHI NPOTpaMHi CHCTEMH, CTaTHYHHI
aHaJi3, aKTUBHUH TYNHK, BUOYX Yepru

00 oxHOM KJIacce MAaTEeMATHYECKUX MojIeei
CTATHYECKOT0 aHAIN3a ACHHXPOHHBIX CHCTEM
KPHTHYECKOT0 Ha3HAYEHHSI
I'.H. Xonrkesuu, U.[. Ilepenenuna
B crathe paccMoTpeHa MaTeMaTHuecKash MOJIENIb aCHHXPOH-
HBIX TIPOTPaMMHBIX CHCTEM. DTa MOJIENb OIIMPACTCS Ha TOHS-
THE abCTPaKTHOW KOHEYHOH Mpe-MaIlluHbI, KOTOpoe 00001a-

7. OMG Unified Modeling Language™ (OMG UML), Infra- er moHsTHe abCTpakTHOrO KOHEYHOrO aBTroMmaTa. B orimume

structure. — Version 2.3. — http://www.omg.org/speclUIB/
Infrastructure/PDF.

oT O6HIerI/IHSITbIX Moneneﬁ MOJEJIb, MPEMJIOKCHHAA B pa60-
TEC, MO3BOJISICT OIMUCHIBATH 0oJiee CIIOKHOE MOBECACHUC CHUCTEC-

8. OMG Unified Modeling Language™ (OMG UML), Super-Mbl 1o CpaBHEHHIO C MOJEISAMH KOHEYHBIX aBTOMAaroB. B

structure Version 2.3. — http://www.omg.org/spec/UMR/2
Superstructure/PDF.

9. Kelley J.L. General topology / J.L. Kelley. — Rgton, NJ:

D. Van Nostrand Company, Inc., 1957. — 423 p.

10. Novikov B. Pre-automata as Mathematical Modefs
Event Flows Recognisers / B. Novikov, I.
G. Zholtkevych // V. Ermolayev et al. (eds.) Prégh Int.

Conf. ICTERI 2011, Kherson, Ukraine, May 4-7, 2011.
CEUR-WS.org/Vol-716, ISSN 1613-0073, 2011. — P.3Q -

11. Dokuchaev M. Partial actions and automata /bku-

chaev, B. Novikov, G. Zholtkevych. — Algebra ancciete

Mathematics. — 2011. - V. 11, No 2. — P. 51 — 63.

12. Novikov B. Derivatives Series of Finite Statee-Pr

Machines / B. Novikov, |. Perepelytsya, G. Zholtkbvy/
Specification and Verification of Hybrid SystemsProc T
Int. Seminar, Kyiv, Ukraine, October 10 — 12, 20H.
T. Shevchenko Nat. Univ. in Kyiv, Paul Sabatier Uiigu-
louse, State Found for Fund. Res. Ukraine, 20PL.40 - 50.

YaCTHOCTH, AHOMAJIMS <@KTHBHBIN TYIHK» MOXET OBITH IpPO-
MOZIENTUPOBaHa B TEPMHUHAX KOHEYHOH INpeA-MaIluHbL. ABTO-
PBI IPUBOASAT KPUTEPUIT BOSHUKHOBEHUS! aKTUBHOTO TYITHKA H
WIIIOCTPUPYIOT €ro IPUMEHEHUE Ha IIpUMeEpe.

KnroueBble ci10Ba: mporpaMMHOE 00eCIIEdeHHE KPUTHIECKO-

Perepelytsyao HazHaueHHsl, aCHHXPOHHbBIC NMPOTPaMMHbIC CHCTEMBI, CTa-

TUYECKUH aHaJN3, aKTUBHBIA TYIHK, B3PBIB OUepeIH

