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Abstract. Long-distance liquid transport in biosystems is provided by special
branching systems of tubes (arteries, veins, plant vessels). Geometry of the sys-
tems possesses similar patterns and can be investigated by computer methods of
pattern recognition. Here some results on plant leaf venation investigation are
presented. The lengths, diameters and branching angles are estimated for the
leaves of different shape, size and venation type. The statistical distributions of
the measured parameters are similar to the corresponding ones which have been
obtained for arterial beds. The both correspond to the model of optimal
branching pipeline which provide liquid delivering at minimum total energy
consumptions. The biomechanical model of liquid motion in a system consist-
ing of a long thin tube with permeable walls which is embedded into a biologi-
cal porous medium is considered. The pressure distributions and velocity fields
for different geometry of the system are obtained. The main result is when the
delivering liquid is completely absorbed by the alive cells in the porous medium
the relation between the diameter and the length of the tube and the total vol-
ume of the medium which correspond to the measured data is reached.

1   Introduction

Transport of liquids and dissolved substances on the distances comparable to the char-
acteristic size of the biological system is provided by special conducting structures. In
animals and higher plants the conducting systems are represented by branching net-
works with 5-9 branching orders in plant leaves and 20-30 branching orders in mam-
malian arterial and venous systems. Design principles of network geometry can be
investigated on special plastic casts of blood vessels (3D-geometry), X-ray pictures of
vessels filled with special substances (arteriography), cleared leaf preparations (leaves
that have been bleached and stained to make their venation patterns more visible) by
using computer methods of image analysis. A few general statistical relations between

the diameters iD , lengths iL  and branching angles iϕ  of separate vessels (fig.1a)

have been revealed in intra-and extraorgan arterial [1-4] and respiratory systems [5-6]
of mammals, in fluid transport systems of sponges [1], vein branching in plant leaves
[7-9], branching in trees and shoots [10-11]. Structure of arterial beds corresponds to
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the model of optimal branching pipeline. The appropriate biomechanical models of
development of the optimal transport system in a growing biological system are based
on theoretical problem of liquid motion through a branching system of tubes with
special properties [2,3,12]. Corresponding models of liquid motion in the conducting
systems of plants are not investigated yet.

2   Measurements and Principles of Construction of the Networks

Geometry of the conducting systems of plant leaves of different shape, size and vena-
tion type is investigated on high-resolution digital pictures of the fresh-cutted leaves
(fig.1b). A few main stages have been provided:
• Contrast enhancement of an image and edges-finding (leaf blade perimeter, leaf

veins) (fig.1c)
• Allocation of separate bifurcations, measurement of the diameters and branching

angles  (fig.1d)
• Skeletization of the vein system, measurement the lengths of veins (fig.1e)

• Allocation of influence domains of different veins (leaf areas iS  which are sup-

plied by liquid through separate main veins) (fig.1f)
Using the procedure more then 327 images of dicotyledonous leaves have been in-

vestigated. In spite of the complicated topology of the conducting systems a few sim-
ple principles of their organization have been found out.

Principle 1. The diameters of the parent and daughter’s vessels 2,1,0d  at each bifur-

cation obey the relation 
γγγ += 210 ddd  which is called Murray’s law. For mam-

malian vessels 3≈γ  ( 02.355.2 −=γ  for arterial, 02.376.2 −=γ  for venous,

91.261.2 −=γ  for respiratory systems) [1-6]. For the large blood vessels and

bronchi 33.2~γ . For the small vessels when rheology of the fluid should be taken

into account 92.2~γ . For the most part of investigated images of plant leaves

3≈γ . The correspondent dependence is presented in fig.2a for one leaf (approxi-

mately 200-250 vein bifurcations). Validity of Murray’s law for arterial systems can

be explained by formation of an optimal vessel with 3~ dQ  due to maintaining the

shear stress wτ  at the vessel wall at a constant level constw ≈τ  [12]. In plant

leaves the veins with 08.0≥d  mm obeys Murray’s law at 3=γ  (fig2a).

Principle 2. Branching angles 2,1ϕ  are defined by the diameters 2,1,0d  by the

formula:
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a b c

d e f

Fig. 1. Image analysis procedure: measured parameters of  a bifurcation of the veins (a); digital
picture of  Vitis vinifera leaf (b); result of edge-finding procedure (c); measurement of the

diameters 2,1,0d  and branching angles 2,1ϕ  in separate bifurcations 1-3 (d); result of the

skeletization procedure, measurement the lengths of the veins (e); measurement of the areas

51S −  of influence domains of the first-order veins (f).
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where 1dd 12 <=ξ , { }2,12 dmind =  is asymmetry of the bifurcation. The

relation between the diameters and angels in a bifurcation is valid for mammalian
arterial beds and is derived from an optimality principle [12]. Both principles 1 and 2
represent an optimal branching that minimizes the costs of delivery of the liquid, the
construction and maintenance of the transport system. For plant veins optimality of the
branching angles is peculiar to the bifurcations with ]2;5.1[K ∈  where

2
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2
1 d)dd(K +=  (fig.2b).
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a b

c d

Fig. 2. Results of measurements by the image analysis procedure: a relation between the Murray’s

parameter 
3
0

3
2

3
1 d)dd( +=ζ  and the diameter 0d  of the parent vein for 200 bifurcations of

a leaf (a); dependence of the optimal (theoretical) and real (measured) angles on the branching coeffi-

cient K (b); dependence )(Ld  for one Vitis vinifera leaf (200 segments of veins) (c); dependence

)(LS for vein segments ( )31n −=  and their domains of influence (d).

Principle 3. The relation βαdL =  has been revealed for mammalian arterial systems
[13] where ]59.7;6.2[∈α , ]16.1;84.0[∈β  (approximately 1~β ). The principle

can be regarded as an allometric rule as applied to different kinds of mammals with different
mass of the body. The dependence between the lengths and diameters of the leaf veins with
orders 31n −=  is presented in fig.2c. The linear dependence dL α=  with

]96;82[∈α  is valid to each leaf from our database.

Principle 4. The dependence 2ALS =  has been obtained for all leaves,
]32.0;19.0[A∈  varies insignificantly for leaves with different sizes (1-35 cm). Shapes

and sizes of the domains of influence are quite different that indicate the nonallometric char-

acter of the relation. The same relation S~L  is well-known for river systems and their
drainage areas in geophysics as Hack’s law. The geometrical similarity of the vein (fig2d)
and river systems is deep and revealed the common design principles of network construc-
tion in Nature [14].
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3   A Biomechanical Model of Liquid Motion in a Plant Leaf

A 2-D steady motion of an incompressible viscous liquid in a porous medium is con-
sidered. Domain of influence is modeled as a curvilinear polygon that bounded by thin
channels (leaf veins) and impermeable border (edge of the leaf blade) taking into

account symmetry of the region about the 1x -axis (fig.3a). The governing equations

have been taken to be the following [15-16]:
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where v  is velocity vector in the porous medium and the generalized Darcy law (2) is

introduced, ikΛ  is permeability tensor, π,p  are hydraulic and osmotic pressures,

µρ,  are the fluid density and viscosity, C is concentration of an osmotically active

dissolved mineral component. As fluid moves along the channels and through their
permeable walls into the porous medium it is adsorbed by alive cells of the leaf and
evaporate into the atmosphere. The total absorption is modeled as distributes sinks of

water ),( yxq  and of the mineral component ),( yxqc , σ,cD  are diffusion coef-

ficient and the so-called reflection coefficient of the mineral component. It was as-
sumed the permeability tensor is defined by the directions of the secondary veins

32 −=i  which are thought to be parallel and form two orthogonal sets of directions.
The directions of the secondary veins in different domains of influence can slightly
differ (fig.3b). Here a Vitis vinifera leaf (fig.1b) is modeled by a cardioid (fig.3a) or
by a circle with a notch at the base of the lamina (fig.3b).

The fluid moves from the inlet 02,1 =x  of the transport system through the tubes

1-2, then through their permeable walls into the porous media I-II. The driving forces
are gradients of hydrostatic and osmotic pressures. The osmotic pressure is defined by
concentration of the solute which can be maintained by the alive cells at a constant
level providing the propelling force for the flux. The van’t Hoff equation for osmotic
pressure can be written as

cM/RTC=π (4)
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a b

Fig. 3. Model of the leaf with 2 veins (1-2) and their domains of influence (I-II) (a); a round
leaf with a notch at the base and venation pattern of the secondary veins (b).

where T  is temperature that is taken to be constant, R is gas constant, cM  is the

molar mass of the mineral component. Substituting (4) into (2) and into (1),(3) gives
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Numerical simulations have been used for solution of the system (5)-(6) and for il-
lustration some key features of the water and the solute motion in regions with differ-
ent geometry. Poiseulle flow in a rectangular channel is considered for the liquid mo-
tion in the veins. The pressure and flow continuity conditions at the walls of the chan-

nels and the constant water and solute fluxes constJ = , constJc =  at the inlet

of the transport system 02,1 =x  are given. The corresponding procedure of numeri-

cal calculations is described in [16]. Different distributions ),( 21 xxq , ),( 21 xxqc
are introduced for simulations using the preliminary experimental data in form

)}xaxaexp(q);Hx1)(Lx1(q;const{q,q 22110210c −−−−= .

The goal of the simulations was calculation an optimal branching angle ϕ  and the

asymmetry of the bifurcation 12 dd=ζ  at given cc1 J,J,q,q,Ld,L,H  which

define the optimal transport system with the optimization criterion [12]:
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where ikik vµ=τ 2 ,  ikv  is rate of deformation tensor. Total value III SSS +=
are given whereas the border between IS  and IIS  are defined after the calculations

on (5)-(6) as a border Γ  with 0dvJ n == ∫ Γ
Γ

Γ , where n  is a normal vector to

Γ . After calculation the pressure and concentration by (5)-(6) the velocity field was
obtained by (2),(4). As an illustration the velocity field and the corresponding domains

of influence are presented in fig.4 for constqq c =, , HL = , 21 dd = ,

1.01 =Ld . The border Γ  has been defined after the velocity ),( 21 vv calculation.

The iterative procedure is consisted of determining the direction Γn  in each point

starting with 02,1 =x  so that Γnvv III |||| . After that the areas IIIS ,  were

calculated.

Fig. 4. Velocity field for a heart-shaped leaf with
two first-order veins

Fig. 5. Distribution )x,x( 21Φ  for a

round leaf, 2L = , 21 dd = , 1.0Ld1 = .

4   Results and Discussions

Total energy dissipation strongly depends on geometry of the leaf: its shape, number
and diameters of the veins. Hydraulic conductance of the main veins is significantly
higher then the conductance of the porous medium where the most part of the total
energy is expended (fig.5). During the computer simulations a few simple shapes
(round, elliptic, cardioid’s) as well as shapes of some real leaves have been investi-
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gated. All the angles of the secondary veins jj ,ψϕ  and of the notch of the blade δ ,

the radii jr  and lengths jL  of the veins have been obtained by measurements on the

pictures of the leaves by image analysis procedure described in the previous chapter.
The optimal criterion (7)-(8) has been evaluated after the calculations on (5)-(6)

and (2)-(4) by variation of separate geometrical parameters δψϕζ − ,,,, 312 Ld

for a leaf with 3 main veins at a constant shape of the leaf blade (round with radius L ,
cardioid’s )cos1( θ−= Lr , where ),( θr  are polar coordinates) or the parameters

δψϕ=ζ=ζ −− ,,,,,, 512132132121 LdLddddd  for a leaf with 5

main veins. For real leaf blades the Lagrange function  VλΦΘ += , const=λ
has been evaluated after the calculations on (5)-(6) and (2)-(4) at small variations of
the geometrical parameters of the corresponding models (figs 3a,b) at close range of
the measured data. For the cases with simple geometry of the leaf blade and the veins
the corresponding inverse problem (7)-(8) can be solved.

For a round leaf at a given number of the main veins the total volume of the system

remains constant whereas the dimensionless function Φ  reaches its minima at cer-
tain branching angle between the main first-order veins (fig.6a). For wide variations of

the branching angles 31−ψ  and the diameters of the veins 2,1d  at a constant L  the

energy dissipation decreases at increasing the conductivity of the veins. Nevertheless
the optimal values of the branching angle ϕ  vary insignificantly for all possible com-

binations of other geometrical parameters and close to

5.351.35opt −=ϕ (fig.6a). The corresponding results for a symmetrical cardi-

oid’s leaf with 3 main first-order veins (fig.3a) are presented in fig.6b. Here increasing
of the diameters of the veins leads to decreasing of the total energy dissipation at a

constant total volume of the system. The dependence )(ϕΦ  reaches its minimum at

8.755.68 −=ϕ  for different pairs of the dimensionless geometrical parameters

12 dd , Ld2  of the model.

The optimal criterion (7)-(8) has been evaluated after the calculations on (5)-(6)

and (2)-(4) by variation of separate geometrical parameters δψϕζ − ,,,, 312 Ld

for a leaf with 3 main veins at a constant shape of the leaf blade (round with radius L ,
cardioid’s )cos1( θ−= Lr , where ),( θr  are polar coordinates) or the parameters

δψϕ=ζ=ζ −− ,,,,,, 512132132121 LdLddddd  for a leaf with 5 main

veins. For real shapes of leaves the Lagrange function  Vλ+Φ=Θ , const=λ
has been evaluated after the calculations on (5)-(6) and (2)-(4) at small variations of

the geometrical parameters 713141 ,,,, −−− ψϕδLr  of the corresponding models

(figs 3a,b) at close range of the measured data. For the cases with simple geometry of
the leaf blade and the veins the corresponding inverse problem (7)-(8) can be solved.
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a b

Fig. 6. Dependence )(ϕΦ  at different pairs of the parameters 12 dd , Ld2 for the

round leaf (a) and for the cardioid’s leaf (b).

The main results of the computer simulations can be summarized as a number of
regularities:
• For any given shape of the leaf blade the optimal branching angle of the first-
order veins exists and depend on the number and diameters of the veins. Some in-
crease/decrease in the branching angle comparable to the optimal value leads to sig-
nificant  increase in the energy loss due to the viscous dissipation in the I/II domain of
influence. The corresponding mechanism of the optimal branching angle formation
during the leaf growth and development can be defined by the balance of the liquid
delivery by the vein and its absorption by the alive cells of the corresponding domain
of influence. When the branching  angle increases/decreases due to some growth
fluctuations the area of I/II domain of influence will increase/decrease and the cells in
I/II region receive relatively less/more amount of water and dissolves mineral and
organic substances. It will lead to the corresponding decrease/increase of the growth
rate in I/II and to decrease/increase the area I/II and the branching angle. The feed-
back system can underlay the mechanism of the optimal branching angle formation
during the normal growth.

• Optimal branching pattern 31−ψ  of the secondary veins 2=i  is defined

by increasing all the angles up to 90~31−ψ . The result corresponds to experi-

mental observations and the statement of evolutional biology concerning the increase
the branching angle for the secondary veins during the evolutional transition from

palmate to the pinnate (with 90→ψ ) leaf venation pattern.

• When pressure at the ends of the main veins equals to the pressure in the
surrounding porous medium so that the total volumetric rate of the liquid motion
through the vein equals to its total absorption by the alive cells in the corresponding

domain the relation jj S~L  is found out for the main veins and their domains of
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influence of all the investigated shapes of leaves. The relation can be regarded as a
relation between form and function of a leaf.

The results of the dynamic computer simulations correspond to the results of meas-
urements on the leaves of different types and to the experimental biological observa-
tions. The balance relations of the liquid motion, redistribution and adsorption can
play an important role in formation the optimal transport systems in plant leaf vena-
tion.
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