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The paper demonstrates the consequences of modulation instability of intense periodic structures in wave and
non-wave media. In the case of a large dissipation level, near and above the threshold, the instability leads to the
excitation of spectra whose width narrows, forming narrow spectral lines and self-similar structure of the big spatial
clearness. At an insignificant level of dissipation, far from the threshold of modulation instability, the wave motion
(initiated by the source) forms anomalous amplitude waves and envelopes exceeding the average amplitude by at
three times. The shape of the envelope or wave packet is similar to the shape of Peregrine breather, and the dynam-
ics over time is also similar. The formation of self-similar spatial structures in the developed convection of a thin
liquid or gas layer due to the development of modulation instability is presented. In this case, toroidal convection
vortices generate poloidal vortices of large scale — the effect of a hydrodynamic dynamo. Experimental results of the
investigation of emerging self-similar structures on the graphite surface are presented. The features of the develop-

ment of parametric instabilities are discussed.
PACS: 52.35.Mw; 47.35.Bb; 47.55.pb; 68.35.B

INTRODUCTION

There are various cases of the development of the
modulation instability of intense periodic structures in
wave and non-wave media (see, for example [1]). The
peculiarity of the modulation instability is the appearance
of the perturbation spectrum, which is practically sym-
metric with respect to large amplitude wave vector [2 -
6]. The modes of the perturbation spectrum are improper
for a given medium, as a rule. The cases of different dis-
sipation levels of large amplitude wave, in the presence
of a source that supports it existence, are considered.

In the case of a large dissipation level, near and above
the threshold, the instability leads to the excitation of
spectra whose width narrows, forming narrow spectral
lines [7]. The line spectrum creates the conditions for the
development of a more large-scale modulation [8]. Thus,
the modulation instabilities near the threshold represent a
cascade of processes with an increasing characteristic
time of development and a larger characteristic scale [9,
10]. The perturbation spectrum in the developed regime
turns out to be practically linear. Forming thus self-
similar structure of the big spatial clearness.

At an insignificant level of dissipation, far from the
threshold of modulation instability, the wave motion
(initiated by the source) forms anomalous amplitude
waves and envelopes exceeding the average amplitude
by at three times [7]. The asymmetry of the modulation
instability spectrum can lead to the formation of wave
packets of anomalous amplitude with different steepness
of the leading and trailing fronts. The shape of the enve-
lope or wave packet is similar to the shape of Peregrine
breather [11], and the dynamics over time is also similar.
Breathers are autowaves in conservative wave systems. In
the nonequilibrium medium of the real ocean the for-
mation of a wave packet (similar to the breather) occurs
due to the interference caused by pumping. One can ob-
serve the interference (analytically [7], numerically [7,
12-13] and experimentally [12, 13]) of standing waves of
different lengths arising in this neighborhood, the velocity
of which is greater or less than the velocity of the main
wave motion. It is shown that the formation of a given
autowave-breather is the result of the development of a
modulation instability in a nonequilibrium medium in
the presence of wave motion of large amplitude.
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The development of convection in a thin liquid or gas
layer with a temperature gradient with poorly conductive
heat boundaries is considered. Similar conditions are real-
ized in thin clouds. Near the threshold of convective in-
stability, a field of spatially homogeneous convective
cells is formed [14 - 16], which turns out to be unstable
[17]. It is the line spectrum of convective toroidal vortex
cells that creates the conditions for the development of
large-scale modulation instability. The formation of self-
similar spatial structures in the developed convection of a
thin liquid or gas layer due to the development of modu-
lation instability presents in [17-19]. In this case, toroidal
convection vortices generate poloidal vortices of large
scale — the effect of a hydrodynamic dynamo.

Experimental results of the investigation of emerg-
ing self-similar structures on the graphite surface pre-
sent in [20]. Important in the experimental data obtained
is not so much the fact of the presence of a vertical
component of the modulation, but rather an undeniable
similarity of the primary structure — the unit cell and the
secondary structure — of the modulation of the electron
density surface. The nature of the modulation instability
is discussed, which leads to the formation of similar
self-similar surface structures [1].

The features of the development of parametric insta-
bilities under the influence of fields homogeneous in
space are considered. The nature of self-consistent para-
metric instabilities is similar to the processes of modula-
tion instability. The spectra of parametric instabilities are
symmetric in the space of wave numbers, respectively, in
the positive and negative regions. As a result of the de-
velopment of parametric instabilities, the parameters of
the medium are modulated. This gives grounds for con-
sidering parametric instabilities to be similar to modula-
tion instabilities and vice versa [21, 22].

1. SELF-SIMILAR STRUCTURES

With increasing wave energy in media with cubic
nonlinearity, the frequency dependence of its amplitude
appears, that is, the wave spectrum is broadened. This
process of spectral broadening a monochromatic wave
is a modulation instability. Consider the case of a bal-
anced source and drain (absorption or dissipation) of the
wave energy. The Lighthill equation [2], describing the
slow evolution of the envelope of oscillations under
these conditions, takes the form
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where ¢ — is the absorption decrement and g — is the
external source of wave energy. Assuming the time and

the coordinates dependence in the form exp{-iQz+iK¢},
we represent the dispersion equation of the process

D(Q.K) = (Q+id + K~ [u, [)(Q+i5 - K+ |u, [)+]| A ['=0»
from which we obtain that the absolute instability in the
reference frame, which moves with the group velocity
of the wave relative to the laboratory one, has an incre-
ment equal to

ImQ=-8+K*-2K* |y, [} -
With a maximum growth rate
(ImQ)MAX =—0+] U, |2 ,
perturbations whose wave number K?=K? =u, [*=1,

grows. The width of the spectrum determines the locali-
zation of this modulation. The value (K,-98)=2z/L cor-

responds to the localization area of the modulation L.
The position of the maximum of the increment deter-
mines the average spatial period T of modulation, that is
K, =27 /T . It was shown in [8, 9] that near the thresh-

old, a cascade of modulation instabilities forming self-
similar structures occurs due to the narrowing of the
spectra of each such process and the creation of condi-
tions for the development of a new, larger scale (Figs. 1
and 2).

In addition, the narrow spectra of each cascade in-
stability form a self-similar spatial structure, that is
clearly observable on each scale.
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Fig. 1. Formation of self-similar field structures
in a numerical experiment [7]: ko=3 —the wave number
of the main wave, Kopr=0.8 —the wave number
of the envelope of the first order, AK = 0.05—the wave
number of the second-order envelope
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Fig. 2. Formation of self-similar field structures
in a numerical experiment [7]: Kopr=0.8 —the wave
number of the envelope of the first order, AK =0.05 —

the wave number of the second-order envelop

2. WAVES OF ANOMALOUS AMPLITUDE

For small values of dissipation, the appearance of
large amplitude envelopes is possible. The most inter-
esting case is the case of gravitational surface waves in
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deep water, for which the following expression for the
frequency of waves of large amplitude is valid

o=1Jg-k{L+| AP k*/2}.

Anomalously high waves are considered to be waves
whose height is more than twice the significant height
of the waves. The significant wave height is calculated
for a given period in a given region. For this, one third
of all recorded waves having the greatest height is se-
lected and their average height is found. Most modern
vessels can withstand up to 15 tons per square meter and
in case of even strong waves this corresponds to more
than twice the safety margin, however, anomalously
large waves can cause pressure up to hundreds of tons
per square meter.

In paper [7], we compare the results (Fig. 3) of cal-
culations for two approaches: S-theory and direct calcu-
lation of equation (1).
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Fig. 3. A characteristic type of anomalous waves in the
composition of wave groups in the case of the S-theory (a)
and in the case of a direct solution of equation (1) (b) [7]

However, a single short-lived breather, the Peregrin
soliton [11] (Fig. 4), is similar to the solution considered
in Fig. 3, describing a single wave of anomalous ampli-
tude.
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Fig. 4. Comparison of the experimentally observed
wave of anomalous amplitude (solid curve)
with the envelope filling, which is the Peregrina soliton
(dotted line) [12]. The ordinate is the amplitude
in meters, the abscissa is the time in seconds

Such a perturbation arises in the field of wave motion
and then disappears, which corresponds to the appearance
and disappearance of a short-lived anomalous wave, due
to the interference of a stack of standing waves of the
modulation instability spectrum moving at different
speeds under the action of the fundamental wave.

It can be shown, that according to the S-theory, the
wave packet of the spectrum can be represented in the
form [7]

N
a-uyexpliz/4]c 2 u, -Cos{-K & +2(K —ud)t+a,}

m>0
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where o :((Dn_T”/Z).
The phases of longer perturbations are located in the
negative region and move in the positive direction, and
the phases of the shorter ones are in the positive region
and move in the negative direction. That is, longer
standing waves move towards shorter ones, and with
decreasing amplitude of the main wave, energy is more
concentrated in the long-wave part of the envelope spec-
trum. The more different is the length of the standing
wave formed by a pair of modes from the length of the
perturbation growing with the maximum increment, the
greater the rate of change of its phase. The interference
of these standing waves, imposed by the main wave, is
forced [1] and is accelerated with a change in the ampli-
tude of the main wave. The interference process of a set
of standing waves forming an anomalous envelope can
be seen (Fig. 5in [12]).

It is a set of standing waves.
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Fig. 5. Evolution of the wave profile of the anomalous
amplitude in the experiment [13]. On the ordinate axis,
estimate the distance (in meters), along the abscissa,
the time of each segment (in seconds)

It is important to note that in the one-dimensional
case under discussion the maximum amplitude of the
anomalous wave (breather) is three times higher than
the average wave amplitude.

3. HYDRODYNAMIC DYNAMO EFFECT

For the first time, the possibility of the occurrence of
a modulation instability of a convective cell system in
the extremely productive Proctor-Sivashinsky-Pis'men
[16] model was stated in the report [14, 15]. This modu-
lation of a system of developed convective cells in a
thin layer of fluid between poorly conducting heat by
horizontal surfaces is caused by the generation of vorti-
ces of a completely different nature than those that form
a convective structure.

b= gzop—(1—v2)2<1>+%V(vq>\cp\z)+yprvq>wi . (2

V2P = VV2Dx VD, 3

The Proctor-Sivashinsky-Pismen model [16] is the
result of the modification [14, 15], describes a convec-
tion, but taking into account the toroidal velocity, where
yor— IS the inverse value of the Prandl number
Pr = v/« Which characterizes the nonequilibrium state

of the liquid, 1 — is the kinematic viscosity, K — here is
the specific thermal diffusivity, £ <<1 in this case. As a
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result of the primary instability, which is accompanied
by a number of structural phase transitions, is the field
of convective cells-toroidal vortices. A small excess of
the threshold of the instabilities determines the high
spatial clarity of the vortex structures, which formed
line spectra that provided the development of subse-
guent cascades of processes.

As a result of the secondary — modulation instability,
large-scale structures (Figs. 6 and 7) consisting of convec-
tive vortices and poloidal vortices [17 - 19] are formed
(similar vortices are considered in [23, 24]). The latter are
of the greatest interest — this is the effect of a regular hy-
drodynamic dynamo, predicted by S.S. Moiseev.

4. STRUCTURE ON THE SURFACE
OF GRAPHITE

Modulation of the surface of a solid can also be de-
scribed within the framework of a modulation instability
(Fig. 8) that develops in such a non-wave medium due
to the potential energy of the stresses.
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Fig. 6. Itisa regular defect in the convectrve structure.
In the upper corner is a fragment of the primary unper-
turbed structure. The dashed lines show the characteris-

tic lines of the current of large-scale vortices [17 - 19]
100| C‘f,- f N

.m%%'

@

@

O
ANITA

ﬂ
@
Q

Sttt

i -.%.
-

Fig. 7. In the background of a field of modulated
convective cells, is the appearance of large poloidal
vortices [17 - 19]

We consider a simple two-dimensional case, with
the X axis directed along an inextensible layer, and the
OY axis defined perpendicular to the boundary of the
sample. Then the wave number of the corrugation inside
the graphite sample can be written as k, =k, +a’k’ /4,

where the ratio between the spatial period A and the
wave number of the periodic structurek =27/ 1,, Koo —

is the wave number in the absence of corrugation, ap —is
the amplitude of the corrugation, and the expression
given above is valid for (i a )> <1. For a perturbed sys-

tem, we can write equation
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Let the corrugation perturbations have wave num-
bers k, =k, + K and amplitudes &, , then for these per-

turbations we can write equation

4
from which it is not difficult to find a solution increas-
ing to the surface

~ exp{-iKy}-exp{kiaZy/ 4},
where, because of the oscillating factor, the growth of
the amplitudes of large-scale perturbations of the corru-
gation is limited. An approximate equality

(k,a,)? = (ka)? + (a,K)?

is performed, where (ka,)? — is the value in the depth
of the sample. On a surface (ka)? ~ o - (a,K)?-
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Fig. 8. Topographical images of highly oriented
graphite sections at various magnifications,
obtained by scanning tunneling microscopy [20]

5. PARAMETRIC OR MODULATION
INSTABILITIES

In the process of development of instability of mono-
chromatic intensive oscillations (excited by electron
beams [25 - 27]), resonant perturbations get advantages,
for which the relations 20, = 0, + w, and 2k, =k, +k, are

satisfied. With increasing spectrum, the interaction of
the perturbations with each other and with a wave of
large amplitude is described by the following relations
20, =0, +w, =0, +o, aNd 2k =k +k, =k +k;. It
was used by the authors of [27, 28] to describe the exci-
tation of the spin waves by an oscillatory magnetic field,
homogeneous in space. This approach allowed the au-
thors [28, 29] to construct a parametric instability of spin
waves. Indeed, as in the theory of parametric instabilities
described by the Mathieu and Hill equations, the multi-
plicative action of a variable parameter or noise is able to
provide an exponential growth of the perturbation.

For this reason, in the book [3], V.P. Silin called the
decay processes of intense Langmuir oscillations, which
are homogeneous in space, as a parametric. A generali-
zation of the Silin model was in papers whose detailed
bibliography in the review [20]. At one time, with the
representation of a model in a cold plasma, V.P. Silin
[3], V.E. Zakharov, investigating the instability of a
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high-intensity Langmuir field in a nonisothermal plas-
ma, discovered an extremely important and extremely
efficient mechanism for the absorption of field energy
by plasma particles [6]. Here, too, the intense field of
Langmuir oscillations at the initial instant was homoge-
neous in space. Therefore, the model of V.E. Zakharov
(Zakharov's equation) can also be attributed to paramet-
ric instability. On the other hand, instabilities in the
models of V.E. Zakharov and V.P. Silin are often called
modulation instabilities, since its spectrum is similar to
the modulation instability spectrum with the only differ-
ence that the wave vector of intense oscillations is zero.
The result of the instability is a strong modulation of the
plasma density (Figs. 9 and 10) and heating of ions, not
so much because of the Landau damping, but to a great-
er extent because of stochastic scattering by field in
homogeneities (see example [30]).
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Fig. 9. The distribution of ions in space in the regime
of developed instability in the model of Zakharov [21]
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Fig. 10. Distribution of plasma ions in space in the
regime of developed instability in the Silin model [21]
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MOCJEJICTBUS MOIYJSIMOHHBIX HEYCTOMYMUBOCTEM
B.M. Kyknun

JIeMOHCTPUPYIOTCS NOCIEACTBHS MOAYJIALIMOHHON HEYCTOHYNBOCTH HHTEHCUBHBIX IIEPHOIMYECKHX CTPYKTYD B BOJHOBBIX U
HEBOJIHOBBIX cpefiax. B ciydae O0JBIIOr0 ypOBHS AHMCCHITAIMY, BOJIM3U U BHIIIE TOPOTA HEYCTOHYMBOCTH IPEJICTABISIET COOO0I
KacKaJ] IPOIECCOB C YBEINYUBAIOMINMCS BPEMEHEM Pa3BUTHS M BCe OOJIBIIMM XapaKTepHBIM MacmtaboM, GopMHpPYS IIPH STOM
CaMoIOJI00HYI0 CTPYKTYPY OOJIBIIOI NPOCTPaHCTBEHHON Y4eTKOCTH. [Ipn HEe3HAUMTEIEHOM YPOBHE JAMCCHIIALMY, BIIAJM OT MOPO-
ra BOJHOBOE JBIKEHHE (OPMHUPYET BOJHBI U OTHOAIOIINEe aHOMAIBHOH aMIUIATYABI, B MAKCHMyMe IIPEBBIIAIONINE CPEIHIOI
aMIUTUTYly BOJHEHHUS B TpH pasza. Popma ormbaromell WM BOJHOBOTO Iakera 1monobHa ¢opme Opmsepa Ileperpuna, mpudem
JMHAMHKa BO BPEMEHH Tak ke mopoOHa. ITokazaHo (opMupOBaHHE CaMONOAOOHBIX MPOCTPAHCTBEHHBIX CTPYKTYP B Pa3BUTOH
KOHBEKIIMY TOHKOTO CJIOSI SKHJIKOCTH WIIM Ta3a BCIEJCTBHE PAa3BUTHS MOAYSIIUOHHON HeycToHuuBOCTH. [Ipn 3TOM, TOpOonaais-
HBIe BUXPH KOHBEKIMH TCHEPUPYIOT ITOJOWJAIbHEIE BHXpH Ooipmioro Macmraba — 3(¢GeKT THMAPOANHAMHIECKOTO JUHAMO.
IpencraBieHbl SKCIEPUMEHTAIBHBIC PE3YJIbTAaThl HCCIIE0BaHUS BOSHHKAIOLINX CaMONOA00HBIX CTPYKTYp Ha MOBEPXHOCTH Ipa-
¢ura. O6GCy)naroTcst 0cCOOEHHOCTH Pa3BUTHS ITapaMETPHUIECKIX HEYCTOHYNBOCTEH.

HACJIIJAKA MOAYJIAMIAHUX HECTIMKOCTEM
B.M. Kyknin

JIeMOHCTDPYIOTBCS HACIAKA MOAYJIALIHHOI HECTIHKOCTI IHTEHCHBHUX MEPIOJMYHUX CTPYKTYP y XBHJIBOBHX i HE XBHIBOBHX
cepeoBUIIaxX. Y pa3i BEJMKOTO PiBHS JUCHUIALIi, MOOIH3Y 1 BHIIe mopora GOpMYEThCS Kacka MPOLECIB 31 3pOCTal0YNM 4acoM
PO3BHTKY 1 Bce OIIBLIIMM XapaKTepHUM MaciITaboM, GOpMyIOUYH IpU BOMY CaMONOIIOHY CTPYKTYpPY BEIHKOI IPOCTOPOBOI HiT-
kocrti. [Ipn He3HauHOMY PiBHI JUcHIIaNii, JaJeKo BiA Mopora XBHILOBUI pyX (OpMye XBUIII 1 OTHHAIOY1 aHOMAJIBHOI aMIUTITYAH,
SKi B MaKCHMYMi NEpEBHINYIOTh CEPEIHIO aMILTITYAy B Tpu pa3u. Popma ormHarouoi abo XBHIBOBOTO MakeTy noaioHa dopmi
Opisepa Ileperpina, npu YoMy auHaMiKa B 4aci Takox moaioHa. [TokasaHo GpopMyBaHHS CaMOMOAIOHNX IPOCTOPOBHUX CTPYKTYP Y
PO3BUHEHIH KOHBEKLIT TOHKOTO Iapy piauHu abo ra3y BHACIIIOK PO3BUTKY MOAYJLILiiHOT HecTiiikocTi. [Ipu 1iboMy, TOpoinans-
Hi BUXOpHU KOHBEKIIiI TeHEePYIOTh MOJIOIadbHI BUXOPU BeIMKOro Macmraly — edekT rixpoauHamidaoro quHamo. [Ipencrasineno
eKCIICpUMEHTAIIbHI Pe3yJbTaT! MOCITIPKEHHS CaMONMOJIOHMX CTPYKTYp Ha moBepxHi rpagity. OOroBOpIOIOTHECS OCOOIMBOCTI
PO3BUTKY NapaMeTPUYHUX HECTIHKOCTEH.
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