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Wave phenomena have been observed in numerous experiments with whole plants. One of possible mechanisms 
of the long-distance high-speed signaling in high plants is connected with concentration waves that can propagate 
through the conducting systems of plants. One-dimensional axisymmetrical stationary flow of a viscous liquid 
with osmotically active dissolved component through a long thin rigid cylindrical tube is considered as a model of 
the conducting vessel of the plant. Constant concentrations of the component at the inlet and outlet of the vessel 
are maintained by the live cells of the vegetative organs of the plant. Nonlinear concentration distribution along 
the tube and the parabolic velocity profiles are obtained. Propagation of small excitations of concentrations and 
velocities along the tube is considered. Expression for the wave velocity U is presented. The range U=20-60 m/s is 
obtained by numerical estimations at wide variations of the parameters within the physiological limits. The time 
delay in signal transmission in the system root-leaves corresponds to the experimental data. In that way the 
concentration waves can mediate high-speed transferring of information between the organs of plants. 
KEY WORDS: signaling in plants, concentration waves, long-distance liquid transport, conducting system.  

 
Wave phenomena in long-distance liquid motion in high plants are still under 

investigated. Two types of conducting vessels  provide transport of water and dissolved 
mineral and organic components in plants. Xylem vessels conduct xylem sap from roots to 
flowers, leaves and fruits opposite the gravitation force. Phloem vessels conduct assimilates 
from photosynthesizing leaves to growing leaves, fruits and roots (fig.1). The ascending and 
descending liquid flows are tightly connected and controlled by the feedback system that is 
carried out by phitohormones and mineral components which are delivered by transport 
system. The driving force of the transport is water potential gradient Ψ∇ . Active transport 
mechanisms and autoregulation of water evaporation by leaves result in non-stationary modes 
of the liquid flow in the vessels. Continuous registration of ψ  at different experimental 
conditions reveals short- and long-wave oscillations [1]. Auto oscillatory mode of ground-
water absorption by roots has been revealed in experiments [2]. Short-period (t~15-80 min) 
oscillations of water exchange in plants have been observed in many specimens [3]. Rapid 
variations of osmotic pressure of the root solution cause quick alterations of the stem 
diameter. The alterations have been observed at rather small variations of the concentration 
(~0.01 Ì) and pass ahead of the bioelectric reaction that is noticeable at Ñ~0.3-0.5 Ì only. 
The alterations of the stem diameter propagates along the stem in a wave- like way with 
velocity v~10-1-1 m/s, that considerably exceeds the rate of liquid movement v~10-4 m/s along 
the stem. Possible explanation of the quick reaction of the plants is connected with wave 
propagation in saturated porous media of plant tissues [3-4]. Similar slow waves with 
v~96 cm/s have been revealed in experiments [5]. The relation between the rates of movement 
of the slow waves in longitudinal and transverse directions are the same as for acoustical 
waves. The waves can carry information (molecules of phytohormones and other regulatory 
substances) along the plant [5-6].  

Hydrodynamical phenomena that are connected with wave propagation along the 
conducting pathways of plants, concentration waves, elastic waves in the porous skeleton of 
the plant tissues have not been sufficiently investigated. In the present paper some problems 
of wave propagation in the conducting systems of plants are considered. 

 



MODEL AND GOVERNING EQUATIONS 
 

Conducting elements of plants can be considered as long thin hollow vertical tubes 
(xylem vessels) and long chains of elongated cells divided by porous plates (phloem vessels). 
The radius a  and the length L of the tube are constant values and 1L/a <<  (fig.2). The 
propelling forces of the plant sap motion through the xylem are connected with water 
pumping by the roots and evaporation by the leaves. As a result the hydrostatic pressure is 
much higher at the inlet (x=0) then at the outlet (x=L) of the vessel. Water pumping due to the 
osmotic effect at the inlet (x=L) of the phloem vessels increases the hydrostatic pressure at 
x=L that causes the motion of the phloem sap to the roots, growing leaves, flowers and fruits 
(fig.1) of the plant (the Munch hypothesis) [7-8].   

 

 
 

Fig.1. Water and solute fluxes in a plant. Fig.2. Model of the conducting vessel. 
 

The governing equations of one-dimension axisymmetric flow of a viscous compressible 
liquid with an osmotically active dissolved component through the tube are the following [9]: 
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where xV  is axial velocity, νρ,  are density and kinematic viscosity of the sap, p  is 
hydrostatic pressure, C,D are concentration and diffusion coefficient of the dissolved 
component. The Munch hypothesis can be formulated as [8]: 
 

0pp +π=           (4) 
 
where π  is osmotic pressure, constp 0 =  is the hydrostatic pressure in the surrounding 
tissues. The balance between the hydrostatic and osmotic pressures is maintained by the live 



cells  and can be regarded as a dynamical equilibrium [9]. For the osmotic pressure π  the 
van’t Hoff equation for a dilute solution can be used in the form: 

C
M
RT

c
=Π           (5) 

where cM  is molar mass of the dissolved component, R is the gas constant, T is the absolute 
temperature. The problem (1)-(5) for the variables ρ,C,Vx  can be solved at the conditions: 
 

0r = :  0r/Vx =∂∂ ,   ar = :  0Vx =    (6) 
0x = :  )t(CC 1= ,  Lx = :  )t(CC 2=    (7) 
0t = :  )x(CC 0=         (8) 

 
INVESTIGATION OF STEADY FLOW IN THE TUBE 

 

When 2,1C,D  are constant we can introduce the dimensionless parameters oC/Cc = , 
oV/Vv x= , L/xX = , a/rz = , oT/tT =  and rewrite equations (2)-(3) in the form: 
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where L/TVSt oo= , D/LVPe o= , ν= /aVRe o , )RTC/()V(M 2
c

ooρ=α . Typical values 

for the parameters are 45 1010a −− −= m, 12 1010L −− −= m, s/m1010D 2910 −− −= , 
34 1010V −− −=o m/s, 610)39.0( −⋅−=ν  m2/s [8,10]. One can obtain here the estimations 

13 1010Re −− −= ,  54 1010Pe −= . When 1Re <<  the derivatives of v  with respect to X can 
be neglected as compared to the derivatives of v  with respect to z and the nonlinear term in 
(10) can be omitted. Solution of (1)-(9) can be considered as expansion in terms of the small 
parameter Pe/1=ε  in the form:  

...cccc 2
210 +ε+ε+= , ...vvvv 2

210 +ε+ε+=      (11) 
 

Substituting (11) in (9)-(10), assuming 0Tv =∂∂  and comparing the values of the same 
order on ε  give the equations for 00 v,c  instead of (9)-(10) (subscripts are omitted for 
simplicity): 
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The system (12)-(13) describes Poiseuille- like  flow with concentration gradient as a 

driving force instead of the pressure drop. In that way the solution of the system is: 
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where oC/Cs 2,12,1 = . The model (1)-(5),(7)-(9) has been used in [8] for investigation the 
stationary flow of the phloem sap at some simplifying conditions. Now we can substitute (14) 
into the equations for ...,c,c 21  and calculate the high-order terms in (9)-(10). Some results of 
numerical calculations of distributions )X(v),X(c  are presented in fig.3-4. 

  
Fig.3. Dependences )X(c  for 12 C/C =0.9, 
0.7, 0.5, 0.3 (curves 1-4 respectively). 

Fig.4. Dependences )X(v  for X=1, 0.8, 0.6, 
0.4, 0.2 (curves 1-5 respectively). 

 
PROPAGATION OF SMALL EXCITATIONS 

 
We consider here the wave propagation through the tube as possible biophysical 

mechanism of long-distance signaling in high plants. The linearized equations (1)-(2) when 
they are considered as a system for )p(,p,Vx ρ  describe propagation of small excitations in 

the form )w/xt(i/eff −ω= , where { }p,Vf x= , /f  are small amplitudes, ( ) 1dp/dw −ρ=   is 

wave velocity. The values s/m10~w 3  can be obtained here by numerical estimations. That 
sort of waves can carry information between the leaves and the roots of the plant at rapid 
variations of the pressure conditions at the ends of the tube, for instance in experiments with 
plants in pressure bomb chamber [11]. The relatively slow concentration waves can be 

investigated by assuming /
c csc += , /vcvv +=  in (9)-(10), where 21c sss ==  and 

0vc =  are unperturbed values, // v,c  are small perturbations that can be introduced as  
)u/XT(i*/ ecc −ω= , )u/XT(i*/ evv −ω=       (15) 

 
where u is wave velocity. Substituting (15) in (12)-(13) we obtain the uniform algebraic 

system of equations for the small amplitudes ** v,c  in the form: 
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The solvability condition for (16) is 0)Adet( =  that gives the next expression for the 
wave velocity (in dimension form): 
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In the phloem vessels the sucrose solution moves through the tubes and for the case 

mol/kg3423.0Mc = , 3m/kg1300=ρ , 3
1 m/kg300200C −=  [8,10]. Assuming the  

temperature variations K303283T −=  we can obtain from (17) the range of the wave 
velocities s/m6020U −= . The wave is rather small one as compared to the longitudinal 
wave in compressible liquid. When the plant stem possesses the total length m11.0L −=Σ , 
the slow wave passes the distance ΣL  in 507.1~t −  ms.  
 

CONCLUSIONS 
 

At dynamical equilibrium conditions the concentration gradient between the inlet and 
outlet of the conducting vessel that is maintained by active synthesis (absorption) of the 
dissolved component in different vegetative organs of the plant defines the propelling force of 
the liquid motion through the vessel. The governing equations give the parabolic velocity 
profiles and nonlinear concentration distribution along the vessel. 

Slow concentration waves can be caused by variation of the concentration of the 
dissolved component at the end of the tube. At wide variation of the parameters of the model 
within the physiological limits for high plants the wave velocity s/m6020U −=  is obtained. 
For the stem length m11.0L −=Σ  the time delay between application of the stimuli and 
reaction of the distant vegetative organs is 507.1~t −  ms that is comparable to the 
experimental data [4]. In that way the slow waves can mediate long-distance high-speed 
transferring information between the organs that can not be carried by convective flow of the 

liquid which moves at 45 1010~V −− −  m/s and reaches its maxima 04.002.0V −=  m/s in 
lianas.  
 Propagation of the concentration jump 1Cδ  along the vessel as well as non-stationary 
conditions )t(C),t(C 21  at the ends of the vessel  can be investigated on the basis of the 
developed model. The results can be generalized for the model of the conducting system as a 
bundle of thin tubes with porous walls [12] with different mechanical parameters [13].  
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