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In the paper a class of discrete dynamical models, based on the intra- and between-specific relationships (interactions), which
adopted in biology and ecology, is suggested. The relevance of the models in the form of a convergence in probability of sample
correlation coefficients is grounded. One of the introduced models, applied to the analysis of a turtle's walk under two states, allowed to

reveal deep systemic factors of biomechanics of animal's walking.
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Introduction

There are concepts that describe an animal's walk as a
complex process of system character, which has been
known at least since the first half of 20-th century, and are
used to analyze the walking characteristics of different
animals from human beings to dinosaurs [1, 2, 6, 7, §].
Beginning with reptiles, the relation between factors
guaranteeing stability of an animal's body along with the
motion rate in the process of motion is of very importance.
Considerable difficulties arise when it isimpossible to trace
the entire sequence of an animal's motion during each
phase. To get over these difficulties, in this paper we used a
mathematical apparatus of discrete modeling and dynamic
systems with feedback (DMDS), to develop with some of
the authors participation [3, 4, 5], a way to obtain the
sequence of phases of a cycle of system changes (system
trajectory) based on the partial information, when only
separate phases are known but not their sequence. The
objective of this paper is to investigate the relation between
the rate of motion and body stability factors, in a rather
simple case, of aturtle's wak using the DMDS method.

1. Theory

In this paper, the authors suggest an approach to
determine the relationships between biological objects (say,
species) in the framework of some discrete dynamical
model. In brief, this approach is presented in illustration [3],
which we will discussin more details.

Let a biological or ecological system be described by
N components A, Ay, ..., Ay . These components can

have different representations, for example, they can be
express the numbers of animals or the amount of biomass of
different species. We assume that components only take
discrete values 1, 2, ..., K, i. e K vaues. The value 1
means a minimum amount of a component, the value K
means its maximum value, i. e. a component varies from 1
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to K. Indeed, the real range of component's varying may
differ from the range [1,K], but for our model the only
important thing is that the component varies in some
guantitative scale from minimum to maximum.

The value of each of the components is observed and
measured at discrete instants of time t =0,1,.... Thus, the
values of the component A (i. e. i-th component) at the
instants of time t =0,1,... arenumbers A(0), A1), ....

The trgjectory of the system is described by an
infinitive-right matrix

A0 AD AG

KO A1) AOB ..
. . . ' (1)

ANO) AN Av@

This tragjectory, as aways, includes all states of the
system at the instants of time t = 0,1,.... Hence the state of
the system at the instant of time t is the vector (A (t),

A, ..., Ay (t))T , where T means the matrix
transposition. We suppose that the system is drictly
determined, and its state at the instant of time t is fully
determined by the state at the moment t —1. According to
the theory of mathematical systems [9], such a system is
called a free dynamical system with discrete time, but in our
paper we shall use own terminology. Since the system has

only finite number of states (namely, K N ), there exists a
positive integer 7 , for which the conditions of periodicity
hold

Aj(s)=Aj(s+T), Vsz g,

for someinteger 55 > 0.

It is natural to cal a number 7 the period of the
system. Let us extract the minor
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A(s)  Als+l) A(s+T-1)
Ao(s)  Ay(s+l) Po(s+T-1) @
An(s) Ay(s+l) Av(s+T-1)

from the matrix (1) (s> ), which gives full description of

the behavior of the system.
Let us introduce a concept of relationships between
components. Let Q ={-,0,+}, i. e the set O consists of

three elements. We determine a relationship between
components A and A; asan entry from the set QxQ and
denoteit as A(A, Aj) = (o,0,) , Where 0 € Q, 0 € Q..
If A(A,A))=(o1,0p), this means of this relationship
following:

1. If o ={-} then large values of the component A,
implies decreasing the value of the component A .

2. If o ={0} then the value of the component A,

doesn't influence the value of the component A .

3. If oy ={+} then the large values of the component
A; impliesincreasing the value of the component A .

The relationship A is antisymmetric, i. e. if
A(AA) =(01,03), then A(A,A)=(02,0). It is
obvious that al combinations (wq,,) correspond to
relationships (interspecific interactions) of neutralism,
competition, amensalism, predation, commensalism and
mutualism, widely used in ecology and biology. We
assume, that each component A; can have with itself only
following relationships — (0,0), (-,-) and (+,4), i. e
symmetric relationships.

Assume that al relationships A(Aj,A) between all
pairs (A;,A) of components A, Ay, ..., Ay are fixed.
Let us define for each A; the set of components, for which
A; hastherelationship (s,u), sueQ,i.e. (su) issome
fixed relationship from the set QxQ

Li(su) ={A |Q(A},A) = (su)}.

The sets L (+,+), Lj(=-), L;(0,0) can have from
0 to N entries, other sets (L;(og,03), ©1 = ;) can
have from O to N -1 entries. It is convenient to express

relationships by a relationships matrix. If we have N
components A, A,..., Ay, the relationships matrix is

called the following table

A A A
A (o,0)

A (0,07) (02,07) .(3)

A (on,01) (0N 02) (on oN) |

The relationships above the main diagonal are omitted,
since they are recovered by the relationships below the
diagonal (according to the antisymmetric property).

Let »»={1,2,...,K} and Nj(su) is the number of

componentsintheset Lj(s,u), j=1,2,...,N.A transition
from the state (A(t), A (t), ..., A,(t)" to the state
(At+1), A(t+D), ..., Ah(t+1))T is described by N

transition functions F; . Each function defines the mapping

%Nj (+,+)+Nj (+,0)+Nj (+,—)+Nj (—,+)+Nj (—,0)+Nj (=-) N

This mapping in symbolic form may be expressed by
the formula

A (t+1) = Fj (Act) e Lj (+,+), Ac) € Lj (+,0),

A e Li(+-) A eLj(=), 4
A®) e Lj(~0), A eLj(~) j =12....N,
where Ac(t) e Lj(+,+), A(t)el;(+0),
values A (t) of al A, belonging to Lj(++), L;(+,0),

... correspondingly.

The transition function, introduced by the above
formula, is quite natura in its structure. The given
component A is influenced only by those components,

are the

which indeed influence A;, i. e. the components from the
sets Lj (+,0) and L (-,0) forany e W.

Now, le us describe types of relationships, inherent to
real biological and ecological systems.

The formula (4) expresses a general form of transition
of the system from the state at the moment t to the moment
t+1. For a more detailed description of the behavior of
biologica or ecological system, we have to specify an
explicit form of transitional functions, which express
dynamical properties of the system.

We suggest two approaches to such a dynamics, which
are based on concepts of biological interactions.

Let us introduce the following functions defined on the
set s

Inc(A) = min{K, A+1},
Dec(A) = max{1, A-1}.

First we define a type of relationships, which takes into

account the weighted sum of all A; (t) (inclusive A (t) ) for

calculating the value of component A at the instant of time

t+1. We call this type of relationships a weight functions
approach. Now, thisisthe exact definition.

For each j (j=1,2, ..., N) we introduce a set of
j
functions of interactions of those components, where A,

functions (pﬁ,u> OF <P§,Séu> O (pﬁ\j') () . These are the

has relationships (s,u), se{+,-}, ue W. The properties

of these functions are the following:
1. The functions are defined on the discrete set >« .



2. <PJ++>() <P§,+k’0>(~), (pJ+ () are increasing
functions.

3 0070, 020, o7() ae decresing
functions.

4 om= PwW=eli =

ol MW =0i2) =
Now define a set of numbers 5; >0 (j=1,2....,N)

ol (W) =0,

and call them thresholds of sensivity. For the system's state
at theinstant of time t the following valueis calculated

dj:

= T oA+ ¥
AkeLJ(++) AeLj(+.0)

T ST AM+ T ol A+ ()
Acelj(+-) Acelj(=+)

) 2+ 3 ol (A,
Acelj(- Acelj(=-)
(itisclear that d; dependson t, but t isomitted for short

in the left side).
The value of the component A; changes according to

aoj+k°>(/sk(t» +

the value d; by the following rules

1.if dj 23;, then A; (t+1) = Inc(A; (1)) ;

2.if dj <5, then Aj(t+1) = Dec(A; (1));

3if =8 <dj <&, then Aj(t+1)=A;(t).

Now we can explain the mean of introduced transition
functions. For example, the functions ¢} i k+>()
(k=1,2,...,Nj(-+))
component A; of those components, which related with A
by relationship (—,+),
Lj(=+) . The greater this influence (i. e. the greater values
of A(t) fromtheset L;(-+)), thelessvaluesof d;. An

reflects the influence upon

i. e. the components from the set

influence of other components, where A; has other

relations, are “weighted" in similar way. If cumulative
influence of the components, interacting with A; and

expressed by (5), exceeds the threshold value 5,

valueof A; changes by unit.

then the

From the rules for definition of transitional function one
can observe, that an increment of the value of AJ- islessor

equal to 1 (] Aj(t+1)-A;(t)[<1). This means, that the
rate of changes of A; isinvariable. It is possible to avoid

such an unnatural restriction, for example, by introducing a
dependence of the increment on |d; [/3; . However, in this

paper we do not consider such extensions.

It is clear that the threshold & ; influences the dynamics

of the system in following way: the greater §;, the greater
absolute value of the weighted sum d; required for
overcoming &; in changing the value of A;. So, if §; is
very large, the system becomes very inert. When

YooK+ 3 oK)+
AeLj(++) AeLj(+.0)

PO G PR O
AeLj(+-) AeLlj(=+)

+ T o0+ T oSk,
AceLj(-0) AceLj(--)

the value of A; never changes ( A; (t) = const, t=0,1,...).

8 > max{

If we wish to avoid thistrivial case, the value of 6j should

be not very large.

A second approach, proposed here, is based on the
famous Justus von Liebich's law of limiting factors. This
concept was originally applied to plant or crop growth. This
approach is described in brief [3] and now we give detailed
description of this approach. Our following results are based
onit.

Assume, that the system of relationships between A,

A, oy Ay

matrices C and C" of size N x N . The transition functions
are based on the following algorithm.
Let the system in the instant of time t has the state

(AWM, A1, ... AV®)
component. Let i runsfrom 1 to N, by u we denote any
entry fromtheset W .

1. If for the current i the equality A(Aj,A)=(-Uu)

holds, we assume
-1, it AM)=cy,

f, =40,

1

is given. Let us introduce two constant

and A; isan arbitrary fixed

if Cji +1< AJ (t) < C)}i —1,
Note, that no matter the specific value of u, only the
influenceon A; fromthesideof A playstherole.
2. If for the current i the equality A(A;,A) =(+u)
holds, we assume
-1, if Aj(t) <cy,
fi =<0, if Cji +1< Aj (t) SC)}i -1,
1, if A=
3. If for the current i the equality A(A;,A)=(0,u)
holds, we assume f; =1.
After the cycle termination, we obtain the sequence f;,
fa, ..., fn. Then we can calculate the value A, (t+1)



according to the following rule:

Dec(A; (1)), if :Iinirlll{ fi}=-1,
A (t+1) = A 1), if Lm"ﬂl{fi}zo' (6)
Inc(A (1)), it min{fi} =1
I<i<N

Applying this algorithm for each j =1, 2, ..., N, we
shall obtain the system's state at the instant of time t +1.

Now we can explain the mean of an introduced
transition from t to t+1. E. g., stating that the given
component A; has the relationship (+,—), which is the

current component A (see agorithm). According to the
lead to
decreasing A . Indeed, according to the item 1 of the

mean of relation (+,-), large values of A

algorithm, if A(t)ze’}i (i. e A(t) is "large enough"),
fi=-1 and, according to (6), A; will decrease if
A; (t) > 1. Other cases of this transition works analogically.

When we investigate real data, we do not observe the
dynamics, described by relationships (3), by the matrix of
the trgjectory (1) or by itsminor (2).

The result of this observation is the following table of
cases

Cu Cp Cis
- C C C
N = :21 :22 ?B ’
Cni Cno2 Cng

where columns correspond to cases and rows correspond to
components (N componentsand B cases).

We propose an algorithm that reveals the system
relationships of above mentioned type, on the base of
transition functions Fj, j=1,2,...,N and the observation

table M .

This algorithm allows us to determine between- and
intra-components relationships, which are as close as
possible relationships that form matrix (2) in a certain mean.
Assume, that a number K and transition functions are
given. In this case, for initial will be (A(0),A(0), ...,

AN(O))T e »N and the given sets Ly(u,s), Ly(u,9), ...,

Ly (u,s), ue{-,0,+}, se{-0,+4}, which makes it
possible to calculate the matrix (1) or the minor (2). Let
1 o ... NN
r 1 ...
L
Nt N2 - 1

be a Pearson correlation matrix between rows of minor (2).

Now for the matrix M let us calculate Pearson correlation
matrix of itsrows

1 pp o PN
_ 1
B= P:21 : PzzN .
PN PNz e

Let us introduce the measure of distance between

correlation matrices P and P

N

. N-1 N ,
D(P,P)= X 'Zl(rij = pij)= (1)

j=1j=i+
Consider the task of minimization D(P,P) by all
possible vectors of initial states (A@0), A0, ...,
Ay(O)" €N and al dlowable sets Lj(s,u), sueW
for al j
D(P,P) — min
by al initial states and by all allowable L;(s,u) .

Now, we can explain the mean of the stated task.
Suppose, that a process in some real system is described by
cyclical trgjectory (2). One cannot the possibility to observe
the dynamic of this trajectory, i. e. a full length cycle. The
observation are taken from the system at random instants of
time t from s to s+7 —1 with equal probability. When

an observation is fixed, the column (A(t), A(t), ...,
Ay (t))T from (2) is attached to table of observations. In

other words, the columns of table of observations M are
obtained from (2) by an equiprobable choice of columns.
The stated task means a search of such relationships
between components, that the minor (2) is to be as close as
possible to the table of observations in the mean of the
measure (7).

The following theorem shows, that this task is well-
grounded in some mean.

If the table of observations M is obtained from the
minor (2) by equiprobable choice of columns, then the
correlation matrix of the observations table P converges to
the correlation matrix of minor P (in probability)

lim p” = rij , i :1,2,..., N, J :1,2,..., N.
B—w

Proof. Since the Pearson coefficient is a pairwise
characteristics (between two variables), it is enough to
prove the theorem for thecase N = 2. Let

X1 X2 X, T

X1 %22 X1
be the minor (2), where we use the notation X ; instead
A(j+s-1) for convenience. Let X =%Zj7=1xi,j,

i =1,2, are to be the means of rows. If a sample variance
of both rows is not 0, the Pearson correlation coefficient
(between rows) is equal to



T p— —
20%,j —%) (X, | —X2)
_ i
AN Z 2 | L o 12
20q —%), [ X (X —%)
]=1 ]=1

Now we can present the observation matrix M as a
frequency table

X1 X2 X T
X1 X2 X7 |
m m ... my

; T
where m; is a frequency of the column (X ;,% ;)" .

which is taken from the minor (2) and placed into the
observation matrix M .

The means of the rows of the observation matrix M
are

_ 17
Ci: .’J. E;

i\ MUJ

_— = —X -’I = , .
Bk j=1 B ol

m.
According to the Bernoulli theorem [10], Ej - % (in

probability, when B — «) foral j=1,2,...,7 . From this
it follows C; — % (in probability, B— ), i =1,2.

The Pearson correlation coefficient (between rows) of
the observation matrix M equals

T
> &(XLk = %) (X —X2)
k=1 B

A I m o2 [ m o \2
X0k %) X ok — %)
k=1 B k=1 B
Then,
limRg =
B—w

Zszl% (xx —C)0%k —Cy)

lim

B—m\/zk S (x —C) \/Z 7(X2,k -GCy)?

Zzzlg Ok — X)Xk —%2)

Bl‘l m
o0 \/Z

Zzzl?(xl,k = %) (X2 —%2)

\/ZkT=171. Ok — %)? \/ZkT=171, (X — %p)?
(The convergence holdsin probability).
The theorem is proven.

This result means that if the real dynamical periodic
process is described by the minor (2), we can expect that the
correlation matrix of the observations table will be close to
correlation matrix of real process, i. e. to the correlation
matrix of the minor.

So, as mentioned above, we can consider the task (7) as

— (4K - %) \/Zzzlrg( (Xox — %p)?

:RO_

the task of system identification. Initial states (A (0),

AO), .., AO)
parameters, which should be identified.

and sets Lj(s,u) in (7) ae

2. Resaults

By using digital photography, we captured separate
walking phases (which by no means form a complete cycle)
of a two year-old male Emys orbicularis along the bottom
of an enameled pool located in a terrarium. In the case of
using a stressor, a turtle was kept lying on its back for two
minutes. Then another turtle was immediately put into the
pool in a back up position (without using a stressor).Using
the images, we calculated the ratio of the following
distances to the length of the turtle's shell: from the tail head
to the ankle of each of the four legs — the right foreleg (rf),
the right hand leg (rb), the left foreleg (If), the left hand leg
(Ib). We considered such a distance to reflect the degree of
aleg straightening.

Using DMDS, the structures of relationships and sets of
states of the four-component system were obtained for all
four parametersrf, rb, If, Ib (the components of the system
are the turtle's legs). The results correspond to the
observations both for the stressed and non-stressed cases in
the outmost degree (in the conventional sense for DMDYS).

For modeling with DMDS, we used the approach based
of the principles of the von Liebig law and proposed that
K =3 (three levels of components' values). For these two
cases, the system trajectories which showed the sequence of
walking phases (the cycle including different combinations
of contracting and straightening of each of four legs) were
constructed. On these tragjectories, the system factors
analyzed the body's stability for the stressed and the non-
stressed turtles walk.

A marked difference between the system trajectories for
each case with and without the stressor was recovered. In
the case of the turtle without the stressor, the DMDS
obtained the following data in the system trgjectory. Thisis
represented in the table 1.

Table 1. System trajectory for the case without stressor.

rf 3333211123 3
rb 11233321111
If 11112211111
Ib 2111111233 2
Conditiona

23 456789101

time, steps

The bold font highlights the sequences of monotone
increase of rf, rb, If and Ib values which corresponds to
apparent motion of extremities (in this paper we neglect
differences in the directions of motion). This system
trajectory shows that the extremities start their motion in
patterns so that only one leg keeps moving, and only at the
end of each phase they start to move the other one. Thus,
most of the time the turtle's body has three supporting points
which guarantees stability of its motion.

In the case of the turtle with the stressor, the DMDS



data obtained the following data in the system trajectory.
Thisisrepresented in the table 2.
Table 2: System trajectory for the case with stressor.

rf 12211112333 211
rb 1112333211 11 11
If 1233321112 21 11
b 1111111112 3 3 3 2
Conditional

) 2 3 456 7 89
time, steps

This system trajectory shows that in contrast to the case
of a non-stressed turtle the motion of a stressed turtle has
phases where two legs are simultaneously moving so there
is no guarantee that the body has three supporting points to
maintain stability of its motion.

The results of the DMDS alows us to put forward a
working hypothesis: that even under very slight stressin the
motion of a turtle there occurs a deviation from the optimal
relation between factors providing motion rate, and stability
to the deterioration of conditions for stable motion. This
deviation can be registered by systems of remote sensing
(say, by digital photography) and further analyzed by
DMDS with the use of an animal's motion trgjectory based
on the images representing the separate phases of motion.
Information about the time sequence of these phases is not
required, so images representing any incomplete fragments
of a motion cycle can be used. In the case with the turtle,
the requirements to refine the images are not so high. The
images can be obtained by digital photography from any
altitude, which allows us to alter the resolution degree and
recognize the position of the animal's legs at a position with
respect to its body silhouette.

Discussion

One should keep in mind that DMDS is mainly the
method that we used to form the working hypotheses. The
working hypothesis in this paper as well as system
trajectories illustrating it, might present some theoretical
interest to study rather simple cases of an animals' motion
and some practica interest, for example, for the
development of systems of ecological monitoring based on
the remote (aerospace) methods of photographing animals
in nature with further computer image processing of their
silhouettes. Deliberately, the important feature is possibly to
use the DMDS process and analyze the arrays of incomplete
infformation with data of fragmentary observations for
separate phases of an animals' motion, in conditions when it
is impossible to observe the time sequence of all motion
phases (say, presence of animals shelters, limited time of
photographing etc.), but on the base of which the whole
cycle of their motion can be restored.

There are well known papers on mathematical modeling
in the biomechanics of animal, reptiles, dinosaurs in
particular, and other fossil of animals that have incomplete
information [11, 2, 6, 7, 12, 13]. In all of these cases the
working hypothesis about the structure of relations between

components of a modeled multi-component system is
needed (in the case of dinosaurs components are parts of
legs taking different but interrelated positions in the process
lof motion). This working hypothesis should be constructed
lindependently from the results of numerical experiments on
tthe given mathematical model, say, based on the data about
ithe structure and position of the tail of a two-legged
dinosaur and analogies with biomechanics of the recent

10 11 12 13 14 Ynimas. We speak about a structure which contains a

certain set of relations from the following list of possible
pairs of influences on each other component in a multi-
component system of any kind: (+,+), (-,-), (-+),
(-0", (+,00 and (0,0). (The procedures of DMDS

explains that if the previous value of an component, which
is a subject to influence, is high then "minus" the influence
leads to decreasing and a "plus' influence leads to the
increasing of the current value of an component, which isan
object of influence; "zero" influence stabilizes the current
values of an component, which is an object of influence, on
the level of previous ones). In the case of DMDS, the
working hypothesis mentioned above appears as a result of
modeling, and this provided successful results.
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JluckperHe JMHaMiYHEe MO/ICITFOBAHHS CHCTEMHHX
XapaKTepPHUCTHK XOJH Yeperiaxu y 3BHYaiiHiX 00CTaBHHAX Ta MiCIIs
nerkoro crpecy. / H0.I'. Becnanos, I.JI. Toponusucekuii, I'.M.
XKonrkeBuuy, 1.T. 3apeurka, K.B. Hocos, T.Il. Bonnapenko, K.M.
KanunoBceka, 5. Kappepo // bBioHika iHTeNeKTy: HayK.-TEXH.
xypHai. 2011, Ne 00(00), C. 00-00.

VY craTTi HPONOHYETHCS IUCKPETHA IWHAMIYHA MOJENb, IO
JI03BOJISIE BUPA3UTU CTPYKTYPY BHYTPILIHEO- Ta
30BHINIHBOKOMIIOHGHTHUX ~BIJHOCHH JWHAMI4YHOI CHCTEMH Y
TEepMiHAX MDKBHIOBOI B3aeMopii, NpuitHATOI y Olojorii Ta
eKoJIorii. 3amporoHOBaHa MOJEINb 3aCTOCOBYETHCS 10 BHBYCHHS
CHCTeMHHX AacCleKTiB GiOMeXaHiKM XOAW Yepernaxu y CIOKiHHOMY
CTaHi Ta MicJIs JISTKOTO CTpecy.

bi6miorp.: 13 Hass.
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JluckpeTHOe JMHAMHYECKOe MOJEIHPOBAHHE CHCTEMHBIX
XapaKTepHUCTHK XOJbObI Yepenaxu B OOBIYHBIX YCIOBHAX H I10CIC
nerkoro crpecca. / FO.I'. Becmanos, WU.Jl. Topomusackuii, I'.H.
XKonrkeBuu, U.T. 3apeukas, K.B. Hocos, T.I1. Bonnapenko, E.M.
Kanunosckas, 5. Kappepo // BuoHuka MHTE/IEKTa: HayK.-TEXH.
xypHai 2011, Ne 00(00), C. 00-00.

B crarse mpeasaraercsi JUCKpETHasl AUHAMHYECKas MOJEIb,
KOTOpasl ~ NO3BOJISIET  BBIPa3UTh  CTPYKTYpy  BHYTpHU- Ta
BHEIIHCKOMITOHEHTHBIX OTHOIICHUH JUHAMHYECKOH CHCTEMBI B
TEpMHUHAX MEXBHOBBIX B3aUMOJCHCTBHUIL, IPUHATHIX B OHOIOTHH
Ta sxosoruu. [IpemnosxkenHas Moaenb IPUMEHSETCS AV H3yUCHUS
CHCTEMHBIX aCIEeKTOB OHOMEXaHWKM XOAbOBbl 4Yepernaxu B
CIIOKOHHOM COCTOSIHHH M TIOCJIE JIETKOTO CTpecca.

Bubnmorp.: 13 Hazs.
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Discrete Dynamical Modeling of System Characteristics of a
Turtle's Walk in Ordinary Situations and After Slight Stress/ Yu.
Bespaov, |I. Gorodnyanskiy, G. Zholtkevych, |. Zaretskaya, K.
Nosov, T. Bondarenko, K. Kainovskaya, Y. Carrero // Bionica
Intellecta: Sci. Mag. 2011. Ne 00(00). P. 00-00.

A discrete dynamic model, which alows to express the
structure of intra and between-component relationships of
dynamical system in terms of interspecific interactions, adopted in
biology and ecology, is suggested in the article. This modd is
applied to the study of systemic aspects of a turtle's walk under
ordinary situations and after slight stress.

Ref.: 13 items.



