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In the paper a class of discrete dynamical models, based on the intra- and between-specific relationships (interactions), which 

adopted in biology and ecology, is suggested. The relevance of the models in the form of a convergence in probability of sample 
correlation coefficients is grounded. One of the introduced models, applied to the analysis of a turtle's walk under two states, allowed to 
reveal deep systemic factors of biomechanics of animal's walking.
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Introduction
There are concepts that describe an animal's walk as a 

complex process of system character, which has been 
known at least since the first half of 20-th century, and are 
used to analyze the walking characteristics of different 
animals from human beings to dinosaurs [1, 2, 6, 7, 8]. 
Beginning with reptiles, the relation between factors 
guaranteeing stability of an animal's body along with the 
motion rate in the process of motion is of very importance. 
Considerable difficulties arise when it is impossible to trace 
the entire sequence of an animal's motion during each 
phase. To get over these difficulties, in this paper we used a 
mathematical apparatus of discrete modeling and dynamic 
systems with feedback (DMDS), to develop with some of 
the authors participation [3, 4, 5], a way to obtain the 
sequence of phases of a cycle of system changes (system 
trajectory) based on the partial information, when only 
separate phases are known but not their sequence. The 
objective of this paper is to investigate the relation between 
the rate of motion and body stability factors, in a rather 
simple case, of a turtle's walk using the DMDS method.

1. Theory
In this paper, the authors suggest an approach to 

determine the relationships between biological objects (say, 
species) in the framework of some discrete dynamical 
model. In brief, this approach is presented in illustration [3], 
which we will discuss in more details.

Let a biological or ecological system be described by 
N components 1 2,A A ,  , NA . These components can 

have different representations, for example, they can be
express the numbers of animals or the amount of biomass of
different species. We assume that components only take 
discrete values 1, 2,  , K , i. e. K values. The value 1
means a minimum amount of a component, the value K
means its maximum value, i. e. a component varies from 1

to K . Indeed, the real range of component's varying may 
differ from the range [1, ]K , but for our model the only 

important thing is that the component varies in some 
quantitative scale from minimum to maximum.

The value of each of the components is observed and 
measured at discrete instants of time = 0,1,t  . Thus, the 

values of the component iA (i. e. i -th component) at the 

instants of time = 0,1,t  are numbers (0)iA , (1)iA ,  .

The trajectory of the system is described by an 
infinitive-right matrix 

1 1 1

2 2 2

(0) (1) (2)

(0) (1) (2)
.

(0) (1) (2)N N N

A A A

A A A

A A A

 
 
 
 
 
 




   


(1)

This trajectory, as always, includes all states of the 
system at the instants of time = 0,1,t  . Hence the state of 

the system at the instant of time t is the vector 1( ( )A t , 

2 ( )A t ,  , ( ))TNA t , where T means the matrix 

transposition. We suppose that the system is strictly 
determined, and its state at the instant of time t is fully 
determined by the state at the moment 1t  . According to 
the theory of mathematical systems [9], such a system is 
called a free dynamical system with discrete time, but in our 
paper we shall use own terminology. Since the system has 

only finite number of states (namely, NK ), there exists a 
positive integer  , for which the conditions of periodicity 
hold 

0( ) = ( ), ,j jA s A s s s  

for some integer 0 > 0s .

It is natural to call a number  the period of the 
system. Let us extract the minor 
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1 1 1

2 2 2

( ) ( 1) ( 1)

( ) ( 1) ( 1)

( ) ( 1) ( 1)N N N

A s A s A s

A s A s A s

A s A s A s

   
    
 
 

   




   







(2)

from the matrix (1) ( 0s s ), which gives full description of 

the behavior of the system.
Let us introduce a concept of relationships between 

components. Let = { ,0, }   , i. e. the set  consists of 

three elements. We determine a relationship between 
components iA and jA as an entry from the set  and 

denote it as 1 2( , ) = ( , )i jA A   , where 1  , 2  . 

If 1 2( , ) = ( , )i jA A   , this means of this relationship 

following:
1. If 1 = { }  then large values of the component jA

implies decreasing the value of the component iA . 

2. If 1 = {0} then the value of the component jA

doesn't influence the value of the component iA . 

3. If 1 = { }  then the large values of the component 

jA implies increasing the value of the component iA . 

The relationship  is antisymmetric, i. e. if 

1 2( , ) ( , )i jA A    , then 2 1( , ) = ( , )j iA A   . It is 

obvious that all combinations 1 2( , )  correspond to 

relationships (interspecific interactions) of neutralism, 
competition, amensalism, predation, commensalism and 
mutualism, widely used in ecology and biology. We 
assume, that each component jA can have with itself only 

following relationships — (0,0) , ( , )  and ( , )  , i. e. 

symmetric relationships.
Assume that all relationships ( , )j iA A between all 

pairs ( , )j iA A of components 1 2,A A ,  , NA are fixed. 

Let us define for each jA the set of components, for which 

jA has the relationship ( , ),s u ,s u , i. e. ( , )s u is some 

fixed relationship from the set 
( , ) = { | ( , ) = ( , )}.j i j iL s u A A A s u

The sets ( , )jL   , ( , )jL   , (0,0)jL can have from 

0 to N entries, other sets ( 1 2( , )jL   , 1 2=  ) can 

have from 0 to 1N  entries. It is convenient to express 
relationships by a relationships matrix. If we have N

components 1 2, , , NA A A , the relationships matrix is 

called the following table 

1 2

1 1 1

2 2 1 2 2

1 2

( , )

( , ) ( , ) .

( , ) ( , ) ( , )

N

N N N N N

A A A

A

A

A

 
   

     

 
 
 
 
 
 
  



   


(3)

The relationships above the main diagonal are omitted, 
since they are recovered by the relationships below the 
diagonal (according to the antisymmetric property).

Let = {1, 2, , }K and ( , )jN s u is the number of 

components in the set ( , )jL s u , = 1, 2, ,j N . A transition 

from the state 1( ( )A t , 2 ( )A t ,  , ( ))TnA t to the state 

1( ( 1)A t  , 2 ( 1)A t  ,  , ( 1))TnA t  is described by N

transition functions jF . Each function defines the mapping 

( , ) ( ,0) ( , ) ( , ) ( ,0) ( , )
.

N N N N N Nj j j j j j              
 

This mapping in symbolic form may be expressed by 
the formula 

( 1) = ( ( ) ( , ), ( ) ( , 0),

( ) ( , ), ( ) ( , ),

( ) ( ,0), ( ) ( , )), = 1, 2, , ,

j j k j k j

j k k j

k j k j

A t F A t L A t L

A t L A t L

A t L A t L j N

     

     

     

(4)

where ( ) ( , )k jA t L   , ( ) ( , 0)k jA t L  ,  are the 

values ( )kA t of all kA , belonging to ( , )jL   , ( ,0)jL  , 

 correspondingly.
The transition function, introduced by the above 

formula, is quite natural in its structure. The given 
component jA is influenced only by those components, 

which indeed influence jA , i. e. the components from the 

sets ( , )jL  and ( , )jL  for any W  .

Now, le us describe types of relationships, inherent to 
real biological and ecological systems.

The formula (4) expresses a general form of transition 
of the system from the state at the moment t to the moment 

1t  . For a more detailed description of the behavior of 
biological or ecological system, we have to specify an 
explicit form of transitional functions, which express 
dynamical properties of the system.

We suggest two approaches to such a dynamics, which 
are based on concepts of biological interactions.

Let us introduce the following functions defined on the 
set 

I ( ) = min{ , 1},

D ( ) = max{1, 1}.

nc A K A

ec A A




First we define a type of relationships, which takes into 
account the weighted sum of all ( )jA t (inclusive ( )iA t ) for 

calculating the value of component iA at the instant of time 

1t  . We call this type of relationships a weight functions' 
approach. Now, this is the exact definition.

For each j ( = 1, 2j ,  , N ) we introduce a set of 

functions ,
,1 ( )s u

j    , ,
,2 ( )s u

j    ,  , ,
, ( )s u

j N j
    . These are the 

functions of interactions of those components, where jA

has relationships ( , )s u , { , }s   , Wu . The properties 

of these functions are the following:
1. The functions are defined on the discrete set  . 



2. ,
, ( )j k    , ,0

, ( )j k    , ,
, ( )j k    are increasing 

functions. 

3. ,
, ( )j k    , ,0

, ( )j k    , ,
, ( )j k    are decreasing 

functions. 

4. ,
, (1) =j k   ,0 ,

, ,(1) = (1)j k j k     =

, ,0
, ,(1) = (1)j k j k     = ,

, (1) = 0j k   . 

Now define a set of numbers > 0j ( = 1, 2, ,j N ) 

and call them thresholds of sensivity. For the system's state 
at the instant of time t the following value is calculated 

, ,0
, ,

( , ) ( ,0)

, ,
, ,

( , ) ( , )

,0 ,
, ,

( ,0) ( , )

=

( ( )) ( ( ))

( ( )) ( ( ))

( ( )) ( ( )),

j

k kj k j k
A L A Lk j k j

k kj k j k
A L A Lk j k j

k kj k j k
A L A Lk j k j

d

A t A t

A t A t

A t A t

 

 

 

   

    

   

     

   

    

   

  

 

(5)

(it is clear that jd depends on t , but t is omitted for short 

in the left side).
The value of the component jA changes according to 

the value jd by the following rules

1. if j jd  , then ( 1) = I ( ( ))j jA t nc A t ; 

2. if j jd   , then ( 1) = D ( ( ))j jA t ec A t ; 

3. if < <j j jd  , then ( 1) = ( )j jA t A t . 

Now we can explain the mean of introduced transition 

functions. For example, the functions ,
, ( )j k   

( = 1, 2, , ( , ))jk N   reflects the influence upon 

component jA of those components, which related with jA

by relationship ( , )  , i. e. the components from the set 

( , )jL   . The greater this influence (i. e. the greater values 

of ( )iA t from the set ( , )jL   ), the less values of jd . An 

influence of other components, where jA has other 

relations, are ``weighted'' in similar way. If cumulative 
influence of the components, interacting with jA and 

expressed by (5), exceeds the threshold value j , then the 

value of jA changes by unit.

From the rules for definition of transitional function one 
can observe, that an increment of the value of jA is less or 

equal to 1 ( | ( 1) ( ) | 1j jA t A t   ). This means, that the 

rate of changes of jA is invariable. It is possible to avoid 

such an unnatural restriction, for example, by introducing a 
dependence of the increment on | | /j jd  . However, in this 

paper we do not consider such extensions.

It is clear that the threshold j influences the dynamics 

of the system in following way: the greater j , the greater 

absolute value of the weighted sum jd required for 

overcoming j in changing the value of jA . So, if j is 

very large, the system becomes very inert. When 
, ,0

, ,
( , ) ( ,0)

, ,
, ,

( , ) ( , )

,0 ,
, ,

( ,0) ( , )

> max{ ( ) ( )

( ), ( ( )

( ) ( ))},

j j k j k
A L A Lk j k j

j k j k
A L A Lk j k j

j k j k
A L A Lk j k j

K K

K K

K K

  

 

 

   

    

   

     

   

    

  

   

  

the value of jA never changes ( ( ) = cjA t onst , = 0,1,t  ). 

If we wish to avoid this trivial case, the value of j should 

be not very large.
A second approach, proposed here, is based on the 

famous Justus von Liebich's law of limiting factors. This 
concept was originally applied to plant or crop growth. This 
approach is described in brief [3] and now we give detailed 
description of this approach. Our following results are based
on it.

Assume, that the system of relationships between 1A , 

2A ,  , NA is given. Let us introduce two constant 

matrices C and *C of size N N . The transition functions 
are based on the following algorithm.

Let the system in the instant of time t has the state 

( 1( )A t , 2 ( )A t ,  , ( ))TNA t and jA is an arbitrary fixed 

component. Let i runs from 1 to N , by u we denote any 
entry from the set W .

1. If for the current i the equality ( , ) = ( , )j iA A u 

holds, we assume 
*

*

1, ( ) ,

= 0, 1 ( ) 1,

1, ( ) .

i ji

i ji j ji

j ji

if A t c

f if c A t c

if A t c

 

    
 

Note, that no matter the specific value of u , only the 

influence on jA from the side of iA plays the role.

2. If for the current i the equality ( , ) = ( , )j iA A u 

holds, we assume 

*

*

1, ( ) ,

= 0, 1 ( ) 1,

1, ( ) .

j ji

i ji j ji

j ji

if A t c

f if c A t c

if A t c

 
    



3. If for the current i the equality ( , ) = (0, )j iA A u

holds, we assume = 1if .

After the cycle termination, we obtain the sequence 1f , 

2f ,  , Nf . Then we can calculate the value ( 1)jA t 



according to the following rule: 

1

1

1

D ( ( )), { } = 1,min

( 1) = ( ), { } = 0,min

I ( ( )), { } = 1.min

j i
i N

j j i
i N

j i
i N

ec A t if f

A t A t if f

nc A t if f

 

 

 

 
 




(6)

Applying this algorithm for each = 1j , 2 ,  , N , we 

shall obtain the system's state at the instant of time 1t  .
Now we can explain the mean of an introduced 

transition from t to 1t  . E. g., stating that the given 

component jA has the relationship ( , )  , which is the

current component iA (see algorithm). According to the 

mean of relation ( , )  , large values of iA lead to 

decreasing jA . Indeed, according to the item 1 of the 

algorithm, if *( )i jiA t c (i. e. ( )iA t is "large enough"), 

= 1if  and, according to (6), jA will decrease if 

( ) > 1jA t . Other cases of this transition works analogically.

When we investigate real data, we do not observe the
dynamics, described by relationships (3), by the matrix of 
the trajectory (1) or by its minor (2).

The result of this observation is the following table of 
cases 

11 12 1

21 22 2

1 2

= ,

B

B

N N NB

C C C

C C C
M

C C C

 
 
 
 
 
 




   


where columns correspond to cases and rows correspond to 
components ( N components and B cases).

We propose an algorithm that reveals the system 
relationships of above mentioned type, on the base of 
transition functions jF , = 1, 2, ,j N and the observation 

table M .
This algorithm allows us to determine between- and 

intra-components relationships, which are as close as 
possible relationships that form matrix (2) in a certain mean. 
Assume, that a number K and transition functions are 
given. In this case, for initial will be 1 2( (0), (0)A A ,  , 

(0))TNA N and the given sets 1( , )L u s , 2 ( , )L u s ,  , 

( , )NL u s , { ,0, }u   , { ,0, }s   , which makes it 

possible to calculate the matrix (1) or the minor (2). Let 

12 1

21 2

1 2

1

1
=

1

N

N

N N

r r

r r
P

r r

 
 
 
 
 
 




   


be a Pearson correlation matrix between rows of minor (2). 

Now for the matrix M let us calculate Pearson correlation 
matrix of its rows 

12 1

21 2

1 2

1

1
= .

1

N

N

N N

P

 
 

 

 
 
 
 
 
 




   


Let us introduce the measure of distance between 

correlation matrices P and P
1 2

=1 = 1
( , ) = ( ) .

N N

ij ij
j j i

D P P r 



  (7)

Consider the task of minimization ( , )D P P by all 

possible vectors of initial states 1( (0)A , 2 (0)A ,  , 

(0))T N
NA  and all allowable sets ( , )jL s u , , Ws u

for all j

( , ) minD P P 
by all initial states and by all allowable ( , )jL s u .

Now, we can explain the mean of the stated task. 
Suppose, that a process in some real system is described by 
cyclical trajectory (2). One cannot the possibility to observe 
the dynamic of this trajectory, i. e. a full length cycle. The 
observation are taken from the system at random instants of 
time t from s to 1s   with equal probability. When 

an observation is fixed, the column 1( ( )A t , 2 ( )A t ,  , 

( ))TNA t from (2) is attached to table of observations. In 

other words, the columns of table of observations M are 
obtained from (2) by an equiprobable choice of columns. 
The stated task means a search of such relationships 
between components, that the minor (2) is to be as close as 
possible to the table of observations in the mean of the 
measure (7).

The following theorem shows, that this task is well-
grounded in some mean.

If the table of observations M is obtained from the 
minor (2) by equiprobable choice of columns, then the 

correlation matrix of the observations table P converges to 
the correlation matrix of minor P (in probability) 

= , = 1, 2, , , = 1, 2, , .lim ij ij
B

r i N j N


 

Proof. Since the Pearson coefficient is a pairwise 
characteristics (between two variables), it is enough to 
prove the theorem for the case = 2N . Let 

1,1 1,2 1,

2,1 2,2 2,

x x x

x x x

 
 
 








be the minor (2), where we use the notation ,i jx instead 

( 1)iA j s  for convenience. Let ,=1
1

=i i jjx x


, 

= 1, 2i , are to be the means of rows. If a sample variance

of both rows is not 0, the Pearson correlation coefficient 
(between rows) is equal to 
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where jm is a frequency of the column 1, 2,( , )Tj jx x , 

which is taken from the minor (2) and placed into the 

observation matrix M .
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According to the Bernoulli theorem [10], 
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(The convergence holds in probability).
The theorem is proven.
This result means that if the real dynamical periodic 

process is described by the minor (2), we can expect that the 
correlation matrix of the observations table will be close to 
correlation matrix of real process, i. e. to the correlation 
matrix of the minor.

So, as mentioned above, we can consider the task (7) as 

the task of system identification. Initial states 1( (0)A , 

2 (0)A ,  , (0))TNA and sets ( , )jL s u in (7) are 

parameters, which should be identified.

2. Results
By using digital photography, we captured separate 

walking phases (which by no means form a complete cycle) 
of a two year-old male Emys orbicularis along the bottom 
of an enameled pool located in a terrarium. In the case of 
using a stressor, a turtle was kept lying on its back for two 
minutes. Then another turtle was immediately put into the 
pool in a back up position (without using a stressor).Using 
the images, we calculated the ratio of the following 
distances to the length of the turtle's shell: from the tail head 
to the ankle of each of the four legs — the right foreleg (rf), 
the right hand leg (rb), the left foreleg (lf), the left hand leg 
(lb). We considered such a distance to reflect the degree of 
a leg straightening. 

Using DMDS, the structures of relationships and sets of 
states of the four-component system were obtained for all 
four parameters rf, rb, lf, lb (the components of the system 
are the turtle's legs). The results correspond to the 
observations both for the stressed and non-stressed cases in 
the outmost degree (in the conventional sense for DMDS).

For modeling with DMDS, we used the approach based 
of the principles of the von Liebig law and proposed that 

3K  (three levels of components' values). For these two 
cases, the system trajectories which showed the sequence of 
walking phases (the cycle including different combinations 
of contracting and straightening of each of four legs) were 
constructed. On these trajectories, the system factors 
analyzed the body's stability for the stressed and the non-
stressed turtles walk.

A marked difference between the system trajectories for
each case with and without the stressor was recovered. In 
the case of the turtle without the stressor, the DMDS 
obtained the following data in the system trajectory. This is 
represented in the table 1.

Table 1. System trajectory for the case without stressor.

rf 3 3 3 3 2 1 1 3

rb 1 3 3 3 2 1 1 1 1

lf 1 1 1 2 1 1 1 1 1

lb 2 1 1 1 1 1 3 2

Conditional
1 2 3 4 5 6 7 8 9 10 11

time, steps

1 2 3

1 2

1 2

1 2 3

The bold font highlights the sequences of monotone 
increase of rf, rb, lf and lb values which corresponds to 
apparent motion of extremities (in this paper we neglect 
differences in the directions of motion). This system 
trajectory shows that the extremities start their motion in 
patterns so that only one leg keeps moving, and only at the 
end of each phase they start to move the other one. Thus,
most of the time the turtle's body has three supporting points 
which guarantees stability of its motion.

In the case of the turtle with the stressor, the DMDS 



data obtained the following data in the system trajectory. 
This is represented in the table 2.

Table 2: System trajectory for the case with stressor.

rf 2 1 1 1 1 2 3 3 3 2 1 1 1

rb 1 1 3 3 2 1 1 1 1 1 1 1

lf 3 3 2 1 1 1 2 2 1 1 1 1

lb 1 1 1 1 1 1 1 1 3 3 2 1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
,

Conditional

time steps

1 2

1 2 3

1 2 3

1 2 3

This system trajectory shows that in contrast to the case 
of a non-stressed turtle the motion of a stressed turtle has 
phases where two legs are simultaneously moving so there 
is no guarantee that the body has three supporting points to 
maintain stability of its motion.

The results of the DMDS allows us to put forward a 
working hypothesis: that even under very slight stress in the 
motion of a turtle there occurs a deviation from the optimal 
relation between factors providing motion rate, and stability 
to the deterioration of conditions for stable motion. This 
deviation can be registered by systems of remote sensing 
(say, by digital photography) and further analyzed by 
DMDS with the use of an animal's motion trajectory based 
on the images representing the separate phases of motion. 
Information about the time sequence of these phases is not 
required, so images representing any incomplete fragments 
of a motion cycle can be used. In the case with the turtle, 
the requirements to refine the images are not so high. The 
images can be obtained by digital photography from any 
altitude, which allows us to alter the resolution degree and 
recognize the position of the animal's legs at a position with 
respect to its body silhouette.

Discussion
One should keep in mind that DMDS is mainly the 

method that we used to form the working hypotheses. The 
working hypothesis in this paper as well as system 
trajectories illustrating it, might present some theoretical 
interest to study rather simple cases of an animals' motion 
and some practical interest, for example, for the 
development of systems of ecological monitoring based on 
the remote (aerospace) methods of photographing animals 
in nature with further computer image processing of their 
silhouettes. Deliberately, the important feature is possibly to 
use the DMDS process and analyze the arrays of incomplete 
information with data of fragmentary observations for 
separate phases of an animals' motion, in conditions when it 
is impossible to observe the time sequence of all motion 
phases (say, presence of animals' shelters, limited time of 
photographing etc.), but on the base of which the whole 
cycle of their motion can be restored.

There are well known papers on mathematical modeling 
in the biomechanics of animal, reptiles, dinosaurs in 
particular, and other fossil of animals that have incomplete 
information [11, 2, 6, 7, 12, 13]. In all of these cases the 
working hypothesis about the structure of relations between 

components of a modeled multi-component system is 
needed (in the case of dinosaurs components are parts of 
legs taking different but interrelated positions in the process 
of motion). This working hypothesis should be constructed 
independently from the results of numerical experiments on 
the given mathematical model, say, based on the data about 
the structure and position of the tail of a two-legged 
dinosaur and analogies with biomechanics of the recent 
animals. We speak about a structure which contains a 
certain set of relations from the following list of possible 
pairs of influences on each other component in a multi-
component system of any kind: ( , )  , ( , )  , ( , )  , 

( , 0) ", ( ,0) and (0,0) . (The procedures of DMDS 

explains that if the previous value of an component, which 
is a subject to influence, is high then "minus" the influence 
leads to decreasing and a "plus" influence leads to the 
increasing of the current value of an component, which is an 
object of influence; "zero" influence stabilizes the current 
values of an component, which is an object of influence, on 
the level of previous ones). In the case of DMDS, the 
working hypothesis mentioned above appears as a result of 
modeling, and this provided successful results.
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