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Abstract. A careful analysis of the magneto-transport properties of epitaxial
nanostructured Nb thin films in the normal and the mixed state is performed. The
nanopatterns were prepared by focused ion beam (FIB) milling. They provide a
washboard-like pinning potential landscape for vortices in the mixed state and
simultaneously cause a resistivity anisotropy in the normal state. Two matching
magnetic fields for the vortex lattice with the underlying nanostructures have
been observed. By applying these fields, the most likely pinning sites along
which the flux lines move through the samples have been selected. By this,
either the background isotropic pinning of the pristine film or the enhanced
isotropic pinning originating from the nanoprocessing have been probed. Via
an Arrhenius analysis of the resistivity data the pinning activation energies for
three vortex lattice parameters have been quantified. The changes in the electrical
transport and the pinning properties have been correlated with the results of the
microstructural and topographical characterization of the FIB-patterned samples.
Accordingly, along with the surface processing, FIB milling has been found to
alter the material composition and the degree of disorder in as-grown films. The
obtained results provide further insight into the pinning mechanisms at work in
FIB-nanopatterned superconductors, e.g. for fluxonic applications.
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1. Introduction

Within the last decade, nanostructured superconductors have received much attention [1-3].
They provide direct access to the manipulation of fluxons, i.e. Abrikosov vortices, with the help
of tailored pinning potentials. This is due to the fact that Abrikosov vortices, which are very
sensitive to the alterations of the superconducting order parameter [4, 5], represent a very useful
tool for probing pinning and, thus, the degree of structural disorder associated with it in different
parts of a nanostructured superconductor. To control vortex motion by suitable defects and their
arrangement, an array of pinning sites is usually used [1-3]. An accurate adjustment of the
fluxons dynamics is achieved by fine-tuning the magnetic field. Accordingly, the study of the
pinning and flux-flow properties [6-8], the dynamic phases and the ordering [9-12], the flux-
flow instability [13—15] and the vortex lattice commensurability [16—19], the vortex guiding
[2, 20-22] and the ratchet [2, 3, 23-25] effect in type II superconductors is of great interest with
regard to both basic research and the development of fluxonic applications.

Various techniques have been used to provide different pinning sites in the form of
dots [26, 27], (blind) antidots [22-25], stripes [28] and more complex nonmagnetic [16—19] and
magnetic [29-31] (nano)structures. All these approaches share the problem that a full and exact
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theoretical description of the two-dimensional nonlinear vortex dynamics in these systems has
not been available so far. On the other hand, very few experiments have been performed on thin
films for a simpler model case in which the nano-engineered pinning potential is assumed to be
periodic in one direction, i.e. is of the washboard type. For a washboard pinning potential (WPP)
the magneto-resistive response of the sample can be accounted for [32-34] exactly, at least
in the single-vortex approximation. Therefore, washboard-like nanostructures arguably
represent the most suitable model system for studying the temperature-dependent nonlinear
single-vortex dynamics at arbitrary values of temperature, current density and angle between
the direction of the transport current and the WPP guiding channels.

A successful approach for the experimental realization of a washboard-like pinning
potential has been used by Soroka et al [20], who employed self-organized semi-periodic,
linearly extended pinning ‘sites’ in thin Nb films grown by molecular beam epitaxy on facetted
sapphire substrate surfaces [35]. There it has been demonstrated [20] that a pronounced guiding
of vortices occurs. Another approach, which is based on the direct nanopatterning by focused
particle beam techniques [36], has been used to provide washboard-like pinning nanostructures
in the form of milled grooves [37] or Co stripes [38, 39] on the top of Nb films. Our preliminary
results [37-40] have shown that anisotropic (a) pinning effects are even more clearly seen in
these highly periodic structures. In particular, Nb films, decorated by an array of ferromagnetic
Co stripes [38, 39] by means of focused electron beam-induced deposition, demonstrate a
pronounced anisotropy of the magneto-resistivity. However, for a quantitative comparison of
that experiment [38, 39] with the theory [32-34], an additional complexity arises due to the
different possible magnetization states in the Co stripes. In this work, in order to fabricate a
WPP without such complexity, we decided to use a complementary technique, focused ion beam
(FIB) milling, in order to fabricate a set of nanostructures tilted at different angles with respect
to the transport current direction. These nanostructures represent a very accurate realization
of the WPP on the basis of which the theoretical predictions of [32-34] can be examined. To
our knowledge, so far there have been very few works [6] utilizing FIB-patterned, washboard-
like pinning structures. A detailed study of the interrelated changes in the structural, magneto-
transport and pinning properties of FIB-patterned films has not been performed until now.

Firstly, a complete characterization of the resistive properties of FIB-patterned
superconducting samples in both the normal and the mixed state has not been accomplished so
far. Secondly, an important aspect is properly accounting for changes in the magneto-resistive
response of as-grown films and how these are modified by nanoprocessing in patterned samples.
In particular, it was previously found that FIB patterning with Ga ions at an energy of 30 kV has
no influence on the pinning properties of 300 nm-thick Nb [6] and 250 nm-thick YBCO [24]
films. For thinner films and for a wider range of irradiation doses this has not been studied
in detail. Thirdly, from geometrical considerations of the cross-section geometry, the normal-
state resistive response must also depend on the angle at which the nanostructure is tilted
with respect to the transport current direction. Then, this normal-state resistivity anisotropy
must be accounted for when more subtle phenomena, such as the pinning anisotropy in the
mixed state [41], have to be analyzed. Finally, it is necessary to correlate the pinning activation
energy with the changes in the material composition and the degree of structural disorder that
arise due to nanostructuring. In the theory [32-34], the pinning strength is characterized by
the depth of the pinning potential, its width and its period. An estimation of these values for
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FIB-nanostructured samples is necessary for a reliable quantitative comparison of magneto-
resistivity data [41] with the theory [32-34]. Besides, these estimates can be used for pinning
potentials of other types [42, 43]. This paper aims to clarify all these questions.

The paper is organized as follows. The sample preparation and the microstructural and
topographical characterization of the samples are reported in section 2. The electrical transport
properties of the samples in the normal state are discussed in section 3. An account of the
mixed-state properties of the patterned films is given in section 4. The central results of the
paper are compiled in section 5, where the pinning potentials are quantified with the help of an
Arrhenius’ analysis of the even longitudinal resistivity component, and the pinning enhancement
mechanisms in the FIB-patterned samples are elucidated. In section 6, we summarize our results.

2. Sample preparation and characterization

2.1. Sample preparation

By means of a single deposition process, two nominally identical epitaxial Nb (110) films with
a thickness of 52 nm were prepared by dc magnetron sputtering onto (1120) sapphire substrates
cut from one and the same «-Al,O; wafer. During the deposition process the substrates
were kept at T, = 850°C, the Ar pressure was p, =4 x 107> mbar and the growth rate was
g >~ I nms~!. For further details of the samples preparation and their structural characterization,
see [44]. Both films were pre-patterned by standard photolithography followed by Ar ion-beam
etching in order to define eight 4-contact structures with an intersection area of 30 x 100 ym?.
One sample has been left unpatterned for reference purposes and seven others have been
nanostructured. Below, each patterned structure will be referred to by the angle value by which
it is tilted with respect to the long strip of the bridge.

2.2. Nanopattern fabrication

Nanopatterning was performed by FIB in a high-resolution SEM (FEI Nova NanoLab 600).
For the patterning process, the beam parameters were 30kV /30 pA in normal incidence and the
dwell time was 1 us. The sample was tilted by 52° with respect to the electron beam column.
To predetermine the average groove depth %, in situ measurements of the electrical resistivity
(see [45]), as a function of the number of ion beam passes, have been made for two bridges
fabricated in an additional Nb film with the same thickness d of 52 nm. The data thus collected
are shown in figure 1. These are accompanied by fits on the basis of a simple model described
in section 3.3. As is evident from the figure, the milling of grooves across the long strip of
the bridge (¢ = 90°) leads to infinite resistance of the structure when 4 /d =1, i.e. the bridge
is completely cut off, as is expected. The complete cutoff of the 52 nm-thick bridge occurs at
32000 ion beam passes. We pre-determined 4 as 8 nm by stopping the milling at 5000 beam
passes. This value was used for patterning all the bridge structures. We considered it to be
sufficient to provide strong a pins and, at the same time, to keep the difference in resistance of
the bridges patterned with different o values small. From figure 1, it follows that the resistance
of the bridge for @ = 0° is much less changed by milling than that for « = 90°, as expected from
the geometry. It is worth noting that with an increase of the groove depth # the difference in film
resistances 6p = [p(0°) — p(90°)]/p(0°) becomes more pronounced. Here §p characterizes the
normal-state resistivity anisotropy.
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Figure 1. In situ recorded changes in the electrical resistance R, of two 52 nm-
thick Nb film structures during FIB patterning. The relative change of the
resistance compared to the resistance of the unpatterned structure is shown
as a function of the ion beam pass number. The nanostructure is an array of
periodically arranged and uniaxially oriented grooves milled along (V, o = 0°)
and across (A, o = 90°) the long strip of the bridge, as shown in figure 2. The
solid lines are fits by equations (3) and (4), see text for details. The upper axis
shows the ratio of the groove depth 4 to the film thickness d.

Whereas the pre-defined nanoprofile (see figure 2) was one and the same for all the
structures, each bridge was patterned with one of the following values of «: 0°, 15°, 30°,
45°, 60°, 75° and 90°. In order to avoid marginal effects, the nanopatterning area was set
to 160 x 32 um?, i.e. as slightly larger than the bridge dimensions. The alignment of the
nanopattern is shown in figure 2(a). The thus obtained samples allowed us to measure the
longitudinal (]|) and transverse (L) voltages for different o values.

2.3. Material composition

The gallium ion beam is known to cause amorphization, implantation and vacancy generation
in the near-surface area of the processed region [36]. In particular, calculations using Monte
Carlo simulations [46] indicate that an implantation of Ga ions occurs chiefly at a depth of
up to approximately 12nm of the Nb film in the present case’. We performed an inspection
using energy-dispersive x-ray spectroscopy (EDX) in the SEM right after the nanostructuring,
without exposure of the samples to air. Specifically, four tests have been made: probed were
one patterned film and one as-grown film, with a test area of 1 x 1 um?, as well as one
region between two neighboring grooves and one region containing a groove, with a test
area of 100 x 100nm?. The EDX parameters were 5kV and 1.6nA. Here the beam energy

5> The stopping of the Ga ions in the Nb film was simulated with the help of SRIM software available under
http://www.srim.org/.
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Figure 2. (a) Sample configuration in the general case: the Nb film with a
thickness of 52 nm is placed in a small perpendicular magnetic field B << B, (T)
at a temperature close to 7,. A small transport current density j is applied to
the sample. Experimentally deducible values are the longitudinal p; and the
transverse p, magneto-resistivities, determined relative to the direction of j.
Seven bridges were nanostructured with the pinning profile tilted at an angle
a of 0°, 15°, 30°, 45°, 60°, 75° and 90° with regard to the j-direction. One
bridge was left non-structured for reference purpose. Quantitatively, 7, is 8.61 K,
the j used is 0.7 or 6.4kAcm™2, and a field B of 8.8mT corresponds to
the fundamental matching field of the vortex ensemble with the underlying
420 nm-periodic washboard-like profile. (b) Cross-section scan with the pinning
nanoprofile parameters deduced along the black line in the AFM image of the
sample surface taken in non-contact mode (c). The symbols a =420 £2nm,
h =8 £0.5nm and 2b = 60 % 3 nm denote the average pinning potential period,
depth and the full-width at half-depth of a groove, respectively.

determines the effective thickness of the layer being analyzed, which is approximately 45 nm.°
This corresponds to approximately 90% of the electron beam energy dissipated in the film.
The material composition was calculated taking into account ZAF (atomic number, absorbtion
and fluorescence) and background corrections. The software we used to analyze the material
composition in the film was EDAX’s Genesis Spectrum v. 5.11. The statistical error in the
elemental composition is 1.5%.

The raw data (not shown) demonstrate peaks of four elemental materials: Nb, O, Al and
Ga. The peaks corresponding to O and Al arise due to the relatively thin film thickness such
that the contribution from the substrate (Al,O3) cannot be avoided. A small fraction of the O
peak area arises from the top 2 nm oxide layer of the Nb film [47]. This oxidized layer is formed

® The penetration of the electrons into the film was calculated by the simulation program Casino available at
http://www.gel.usherbrooke.ca/casino/index.html.
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Figure 3. Material composition in the as-grown film and the same film after the
nanostructuring (probed area of 1 x 1 um?), as well as between grooves and in
the groove area (probed area of 100 x 100 nm?) revealed by energy-dispersive
x-ray spectroscopy. Along the vertical axis, an offset of 10° counts is used to
facilitate comparison. The data were normalized in such a way that the sum of
the content of Ga and Nb in the sample is 100 at.%. The peaks of Ga and Nb are
shown by vertical dashed lines.

during the first seconds after the film had been taken out from the sputtering system. It serves
as a protection layer preventing further oxidation of the film. The peaks of Al and O do not vary
from test to test so that all spectra in figure 3 are normalized in such a way that the sum of the
content of Ga and Nb in the sample is 100 at.%. We now compare these EDX spectra in detail.

Firstly, the test made on the as-grown Nb film shows 100 at.% of Nb, which is our reference.
All the FIB-patterned structures show Ga apart from the dominating Nb peak. We note that
the test area taken over 1um? in the patterned sample includes two grooves and the area
close by. Thus, the content of 5.5at.% can be considered as the average content of Ga in
the nanostructure. This is a strong indication that the material composition in the patterned
structures is changed with respect to that of the as-grown film. To answer the question of whether
there is any variation in the content of Ga in different regions of the pattern, the in-groove
area and the area between the grooves have been probed. According to figure 3, the in-groove
spectrum reveals 11.5at.% of Ga. At the same time, 2.5 at.% of Ga is found in the patterned
structure away from the grooves. This must be due to secondary and high-order collisions of Ga
ions with Nb atoms.

2.4. Topographical characterization

A post-patterning SEM inspection of various linearly extended pinning nanostructures, chiefly
to check the highest achievable resolution of FIB, has been reported in a previous paper [40].
In this paper, we present the results of a more careful analysis of the fabricated nanopatterns by
atomic force microscopy (AFM). For high-resolution morphology characterization, AFM under
ambient conditions in non-contact, dynamic force mode was used. The cantilever tip was shaped
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like a polygon-based pyramid, with a tip radius of less than 7 nm (Nanosensors PPP-NCLR), so
that convolution effects due to the finite tip radius can be neglected. An exemplary AFM image
of the fabricated structure is shown in figures 2(b) and (c). The pattern is a system of uniaxially
directed and periodically arranged grooves (trenches) with a period a of 420 & 2 nm. The overall
shape of the nanofabricated structure is visually identical over the whole area of a bridge and
does not vary from bridge to bridge. The angle « is found to deviate from its pre-defined values
by less than 0.3°. This error originates from an unavoidable rotatory misalignment of the sample
stage with respect to the bitmap pattern in the SEM. The peak-to-peak surface roughness Ad
of the as-grown film is about 1.5nm. Between grooves, all the patterned samples show an
increased Ad of 2.5-3 nm. We attribute this increase to the presence of a small amount of Nb
and, probably, a minor amount of Ga settled onto the film surface during the nanostructuring.
Niobium must have been milled out from the groove regions, whereas Ga may originate from
the focused ions first implanted into the film and subsequently knocked out by the FIB again.

From a line scan across the grooves (see figure 2(b)) we deduce a groove width at half-
depth 2b of 60 & 3 nm and a groove depth /4 of 8 £ 0.5 nm. We note that the smallest test area
achievable with our EDX technique is larger than 2b of a groove. Hence, the value of Ga at the
groove bottom revealed by EDX in the previous subsection seems to be slightly underestimated.
Consequently, it is safe to believe that the content of Ga at the groove bottom is around 15 at.%
as the most probable implantation of Ga is expected underneath the bottom of the grooves.
From the lateral groove parameters we estimate the relative volume fraction ¢ = 2b/a occupied
by a groove as 1/7. From a line scan along the groove bottom (not shown) a peak-to-peak
roughness of approximately 1 nm is measured. All these circumstances allow us to conclude
that the motion of vortices in such a fabricated structure can be theoretically described as their
motion in some periodic pinning potential of the washboard type. So the nanostructure shown
in figure 2 represents a reasonable experimental realization of the anisotropic WPP used for
theoretical modeling in [32-34].

All the samples were wire bonded and mounted onto the sample holder of a “He cryostat
with a superconducting solenoid. All the magneto-resistivity measurements were made in
external fields +B and —B directed perpendicular to the film surface. The even and odd magneto-
resistivity components were calculated according to the relation

p* =[p(+B) £ p(~B)]/2. (1
The normal-state and superconducting properties of the samples are reported next.

3. Normal-state properties

3.1. Zero-field cooling

Typical zero-field cooling (ZFC) curves for the non-structured (as-grown) and one patterned
sample with o = 0° are shown in figure 4. The curves p(7T) were measured with the four-point
dc resistive method. Both curves demonstrate an almost linear segment in the temperature range
of 300-100K and a power-law dependence prevailing between 100 and 10K followed by a
superconducting transition. The residual resistivity ratios (RRRs), defined as the ratio of the
resistivity at 300 K to that at 10 K, are equal to 7.6 and 6 for the as-grown film and the patterned
sample, respectively. The ZFC curves for o from 15° to 90° coincide within 4% with the ZFC
curve for the structure with @ = 0° over the whole temperature range. This is a strong indication
of the homogeneity of the transport properties of both Nb films from which all the structures
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Figure 4. ZFC curves p(T) for the as-grown film and the patterned sample with
o = 0°. The corresponding fits by equation (2) are shown by solid lines.

are made. With increasing « from 0° to 90°, p grows monotonically. This rise originates from
the nanostructuring and is caused by the reduction of the effective cross-section of the transport
bridge due to the milled grooves.

We now turn to the comparison of the p(7") curves for the as-grown film with that for
the 0°-structure. At room temperature the resistivities of the patterned sample and the as-grown
film are 50.4 and 49.9 u2 cm, respectively. Both values are about a factor of 3 larger than
the literature value for bulk Nb [48]. When the temperature decreases the difference between
the p(T') values increases. This is because the residual resistivity py due to defect scattering
in the patterned sample is about 20% larger than that for the as-grown film. The p(7") curves
can be fitted rather well by the Bloch—Griineisen formula [49-51]

Op/T x

o1 = po K (T/0o)" [ v

where ®p is the Debye temperature (275 K for Nb [48]), K is the only fitting constant and » is an
integer determining the power law which in turn depends on the prevailing scattering mechanism
in the sample. The fitting parameter K is chosen such that the best possible coincidence with
the experimental curves in figure 4 is achieved for pjox and py9sx. Both curves p(T') are fitted
by equation (2) with n = 5, which implies that the resistance is due to scattering of electrons by
phonons, as expected for nonmagnetic metals [51, 52].

Using the material constant for Nb, pol =3.72 x 1074 Q cm? [53] and the values of
prok as 7.04 and 8.84 u2cm, the electron mean free path / can be estimated as 5.3 +£0.3
and 4.2 £+ 0.3 nm for the as-grown film and the patterned sample, respectively. The resistive
properties of the samples are summarized in table 1. From the zero-field resistivity curves, one
can conclude that the FIB processing noticeably changes the electrical transport properties of
the nanostructured films. This is because of the implantation of Ga ions.

n

2)

3.2. Hall effect

The transport properties of thin films are known to be sensitive to the degree of disorder and the
carrier density in these films [54]. Whereas the degree of disorder chiefly changes the electron
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Table 1. Transport properties of the samples in the normal state.

Rioox  psoox  Riok  piok  RRR Ruiok n B (0) §(0)
() (uS2em) () (uS2cm) (mm) (m*C™h) (m~3)
32.7 499 436 7.04 53 7.71x 107 8.12 x 10%® 8.88 0.02
33.0 504 550 8.84 42 7.86x 107" 7.95x10%® 8.61 0.05
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Figure 5. Transverse magneto-resistivity R, and its odd-in-field-reversal (Hall)
component R versus magnetic field B at 10K for the non-structured and two
nanostructured films, as indicated. The Hall coefficient Ry is obtained from the
slope of the curves R (B) by fitting a straight line.

mean free path, which has been deduced via the longitudinal resistivity, the carrier density can
be directly calculated from Hall effect measurements. Figure 5 shows the transverse resistance
R, recorded while sweeping the magnetic field from —2 to +2T for the as-grown film and
two patterned samples. The transverse odd-in-field-reversal (Hall) component R for the same
samples calculated by equation (1) is shown in figure 5(b). Considering the left graph first, it is
seen that R (B) for all the samples depends linearly on the field, as expected. All samples show
a very small R, # 0 at zero field. This appears as different vertical offsets of the straight lines
of figure 5(a). This zero-field transverse resistance originates most likely from an unavoidable
small misalignment of the oppositely arranged Hall leads. In some experiments [55], a balance
bridge was used to compensate for this contribution. In other works, this offset is usually
subtracted or the used leads are so narrow [56] that the misalignment error is very small with
respect to the useful signal. In a recent work [57], it has been shown that an additional zero-
field transverse voltage can arise solely due to a nonuniform transport current distribution in the
sample. The effect has been predicted for both high-quality samples with a narrow and sharp
superconducting transition and disordered samples with a wide transition, since only a minor
transverse inhomogeneity is sufficient for its development. In general, the magnitude and details
of this excess transverse voltage are unpredictable and hard to reproduce [57].

From the slope of the curve R (B) = B/ngd we determine the Hall coefficient Ry =
R (B)/B =1/nqd, where n is the carrier density, g is the electron charge and d is the
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Figure 6. The equivalent electric schemes for the calculation of the normal-
state resistivity anisotropy arising during the nanostructuring (a) for « = 90° and
(b) for a = 0°.

film thickness. The values of Ry =7.71 x 107" m*C~! and n = 8.12 x 10®® m~* are in good
agreement with the previously reported values for Nb [58—-60]. We note that n is reduced by
1-2% as a consequence of the nanostructuring. It is interesting to compare this value with the
reduction of the valence electrons in the sample assuming that 5.5 at.% of 5-valent Nb have been
replaced by 3-valent Ga. Such an estimate gives a reduction of 2.2%, which is rather close to
the measured value.

3.3. Resistivity anisotropy

FIB milling alters the cross-section of the bridge. The changes in its magneto-resistivity can be
used to find the relation between the number of beam passes for given beam parameters and the
groove depth resulting from the nanoprocessing.

As a first case we consider o = 90°, i.e. the current of density j flows across the grooves
(see also figure 6(a)). In our model, we assume that the sample is homogeneous, i.e. its thickness
d and resistivity p are the same everywhere in the sample. We, moreover, assume that the FIB
milling is ‘ideal’, i.e. the milled grooves have a rectangular cross-section and there is neither
re-deposit of Nb nor Ga implants. Furthermore, we neglect the inhomogeneity of the current
distribution in the plane of the sample caused by the milled grooves or the bridge edges or the
contact leads. The sample is modeled by a 2n-resistor network connected in series, where 7 is
the number of grooves (see figure 6). In this network, we consider the cross-section between
grooves giving the contribution R; in the total resistance R. The contribution R; does not
depend on the groove depth 4, while the cross-section under a groove gives us the 4-dependent
resistance R,. Taking the geometry into account, it is sufficient, however, to consider just one
pair of resistors R; and R,. Both can be expressed in terms of the resistance of the pristine Nb
film, Ry, so that Ryg = Ry(a —w)/a+ Ry -w/a-d/(d —h) = Ry (1 —k+2zk)/(1 — k), where
k =h/d and z = w/a. We obtain for o« = 90°

Roo/ Ry = 1+2zk/(1 — k). 3)

When a = 0° (see figure 6(b)), the resistances R; = R,,;/(1 —z) and R, = Ry,;/[z(1 — k)],
so that

Ro/Rp = 1/(1 —kz). “4)

The relations given by equations (3) and (4) are plotted along with the in-situ recorded
resistances in figure 1. The best possible coincidence with the experimental data in figure 1
has been achieved for the fitting parameter z = w/a = 1/7. We note that the same value has
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been obtained for the relative volume fraction ¢ = 2b/a occupied by a real groove in section 2
(see figure 2(b)). Substituting a = 420 nm as a nanostructure period, one obtains w = 60 nm
as the width of the rectangular-modeled grooves in figure 6. This value coincides within the
experimental error with the full-width at half-depth of a groove 2b = 60 £ 3 nm deduced from
the AFM-measured profile in figure 2(b). This means that for a simplified modeling, at least
when £ /d is relatively small, the real groove having a triangular-like cross section with the full-
width at half-depth 2b can be treated as a rectangular-shaped groove with the width w = 2b.
With z = 1/7, the experimental data can be fitted well by equations (3) and (4) up to about
23 000 passes, above which a knee-like deviation is observed. The most probable reasons for this
are the ensuing nonuniform current distribution when 4 /d — 1 or the unavoidable re-deposition
of the milled material, which are not accounted for in our simple model. However, since our
samples are patterned with 2 /d ~ 15% we believe that both effects are rather small in the present
experiment. In particular, for a groove depth not exceeding 15% of the film thickness, we obtain
in our work 8p < 3%, which is a factor of two smaller than that in [20].

Three important conclusions can be drawn from our analysis of the normal-state anisotropy
so far: (a) it is shown both by modeling calculations and experimentally, that the normal-state
resistivity anisotropy gives only a small contribution of §p < 3% to the resistive response in the
normal state; (b) this anisotropy can be accounted for quantitatively; and (c) it does not hinder
the observation and the proper analysis [41] of the anisotropic magneto-resistive response in the
mixed state caused by the pinning anisotropy, which is discussed next.

4. Mixed-state properties

4.1. Superconducting transition

All the nanostructured samples are superconducting below a critical temperature of 7, = 8.61 K,
which is slightly reduced compared to that of the as-grown film for which it is 8.88 K. The
critical temperature is determined as the temperature at which the resistivity has dropped to
90% of its extrapolated normal state value. The superconducting transitions for the different o
are shown in figure 7(a). The spread in 7 for different nanostructured bridges is less than 5 mK.
All the patterned structures demonstrate a sharp superconducting transition with a width AT
smaller than 0.05 K. These are broader than AT = 0.02 K for the unpatterned structure.

4.2. Upper critical field

The p(T) dependences of all the samples were measured in a perpendicular field of up to
1.7'T. Figures 7(b) and (c) show the temperature dependence of the upper critical field B, (T')
determined as the respective onset of the p(7) curves at a given B. Solid lines are the best
fits by the standard expression [61] Bo(T) = Bo(0)[1 — (T /T.)?] with the zero-temperature
values B.,(0) for the as-grown film and the patterned sample with o« = 0° as 1.55 and 1.9T,
respectively. For o = 15°-90° the B.,(T') curves coincide with that for « = 0° within 3% (not
shown). Close to T;. the B, (T) curves allow linear fits with slopes of dB.,/dT |7, = 0.24T K!
and dB,/dT |7, = 0.3 TK™! for the as-grown and the patterned sample, respectively. By using
the approximate expression B (0) = 0.697.dB.,/dT |7, [54, 61], from the linear fits one obtains
correspondingly B, (0) = 1.47 T and B.,(0) = 1.8 T, which are within 6% lower than the values
obtained by the square-law expression.
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Figure 7. (a) Superconducting transition in zero magnetic field for different
groove orientations with respect to the transport current direction, as indicated.
(b) Temperature dependence of the upper critical field B, (T') for the unpatterned
structure. The B.(0) value is estimated by fitting the standard expression
B (T) = B (0)[1 — (T/T.)?] (dashed line). The linear fit in the range of
0.4T.-T. is shown by a solid line. (c) The same as (b) but for the patterned
structure with o = 0°. Error bars are also shown.

From the slopes dB./dT|;, we estimate the electron diffusion constant D =
—1.097(dB.,/dT|7,)~"! [62] as 4.57 x 107*m?s~! for the unpatterned sample and 3.66 x
10~*m?s~! for the patterned sample, respectively. These values are comparable with the
previously reported values for Nb films [63]. Below, these values will be used for the estimation
of the Ginzburg-Landau (GL) depairing current at zero temperature.

4.3. Coherence length and magnetic penetration depth

From the expression £(0) = [®(/2m B (0)]'/? [61], where ®(=2.07 x 107> Tm? is the
magnetic flux quantum, the superconducting coherence length £(0) for the as-grown film is
14.6 £ 0.3 nm and for the patterned sample itis 13.2 &= 0.3 nm. Having compared & (0) with /, we
conclude that regardless of the nanostructuring all the samples are in the dirty superconducting
limit as [ < £(0). Accordingly, the nanostructuring does not change the relation between / and
£(0) in the as-grown and the processed samples qualitatively. For this reason, to calculate &£(T),
we use the temperature-dependent relation for the dirty limit [61]

£(T) =0.855[£(0)1'*[1 - T/T.]7">. S

This dependence appears in figure 8, which illustrates how the two superconducting length
scales (£ and A) vary with increasing temperature. In the same plot, the two nanostructure’s
lateral parameters (a and 2b) are marked by horizontal lines for comparison. Note that the
typical values of 2§(T) at T € [0.9T, 0.99T;] are very close to the full-width at half-depth
of the nanofabricated grooves 2b. This allows us to conclude that in this temperature range the
typical diameter of the vortex core is comparable with the lateral dimension of the groove where
the superconducting order parameter is expected to be most suppressed. As a consequence of
this, the grooves with such lateral dimensions are expected to behave as strong a pins which
cause a pronounced anisotropic magneto-resistive response.
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Figure 8. Temperature dependences of the superconducting coherence length
calculated by the dirty-limit equation (5) and the magnetic field penetration depth
by the empirical two-fluid model equations (6) and (7). For the as-grown and the
nanostructured film, A(0) of 100 and 110 nm are used, respectively [53]. The
horizontal lines mark two important nanostructure parameters, the full-width
at half-depth of a groove 206 = 60 nm and a nanostructure period a = 420 nm.
The reduced temperature for the patterned sample is labeled close to the vertical
dashed lines.

For completeness, from [53] we take the magnetic field penetration depth A (0) for a 52 nm-
thick Nb film as 100 nm and use the Gorter—Casimir two-fluid approximation [61, 64]

MT) =101 —(T/T)""?, (6)

to plot A(T) in figure 8. As has been shown by Pearl [65], in a thin film for perpendicular
field orientation the field fall-off is controlled not by A but rather by a thickness-dependent
A1~ A%/d > X, for which close to T, [61]

AL(T) = AL (T)[1+0.75£(0)/11/d. ()

Substituting 39 nm [53, 66] for the London penetration length Ay (0) at 7 = 0 K, the temperature
dependence A, (T') is shown in figure 8. It follows from the figure that for 7 < 0.97T, the value
of A(T) is smaller than the nanostructure period a. Then, at accordingly small magnetic fields
such vortices can be considered as virtually noninteracting. This validates the assumption of
the single-vortex approximation which will be used for the theoretical modeling of more subtle
phenomena in the vortex motion caused by the nanostructuring.

4.4. Critical current anisotropy

To determine the critical current density j. different voltage criteria were used in the
literature [6, 62, 67]. We use a 0.1 uV criterion. The reduction of this criterion does not
significantly affect the results but the contribution of noise becomes more pronounced. The
measurements were conventional dc steady-current-sweep measurements. Zero-field values
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Figure 9. The temperature dependence of the zero-field critical current density
Jo(T) for the as-grown film and the two patterned samples, as indicated. The
inset shows a zoomed-in range 0.85 <t < 1 where the GL depairing current is
shown by a dashed line.

of j. deduced from the current—voltage characteristics (CVCs) at a series of temperatures are
shown in figure 9. The transitions into the normal state are very sharp and for 0.77, ST <
0.997T, they are non-hysteretic while sweeping the current up or down, so that the inaccuracy
of the data shown is less than 2%. For lower temperatures, 0.57, < T < 0.7T,, the data in
figure 9 are those j.(7") values deduced when the current sweeps up. We consider the analysis of
overheating effects and the hysteretic behavior of j.(7) as beyond the scope of our discussion,
as the central results of our work refer to only those data which were acquired out of the
temperature range where these effects are important.

We next compare the measured data with the temperature dependence of the GL depairing
current [68]

JENT) = jEHO) (1 = 2P+,
where j(0) = 4.53(kgT.)*'*/(ep~/Dh) (8)

is the zero-temperature critical current density and ¢t = 7'/ T, is the reduced temperature. From
the measured pjox value and the calculated D we estimate jS"(0) ~45MAcm™ for all
samples. Experimentally, the j.(¢) curves level off at one order of magnitude smaller values.
This is because of the omnipresence of vortices, which under the current action are set in motion
resulting in dissipation. Only if there were no vortices or they were (ideally) completely pinned
could the measured critical current density reach the depairing value. In accordance with [69], in
order to completely exclude vortices from a superconductor sample, its width W must be smaller
than 4.4 (T). As a consequence, the GL critical current can be measured in a wide temperature
range only if the bridge width is in the few hundreds of nm range in the case of Nb films [70].
In the present experiment, the condition W < 4.4£(T) (W = 30 um) can be satisfied only in a
very narrow temperature range when &(7") diverges at T — T, < T.. The inset of figure 9 shows
that the values of j.(7") measured not very close to 7 lie well below the GL curve.
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Figure 10. The field dependence of the critical current j.(B) for the as-grown
(A) and the nanostructured samples with « = 0° (V) and o = 90° (). The two
matching fields are shown by vertical dotted lines.

Important for the following discussion is the critical current close to Tt, j.(0.99T,) ~
50 kA cm~2. Apparently, the j-values of 0.7 and 6.4 kA cm~2 routinely used in the resistivity
measurements are small with respect to j.. Therefore, it is safe to assume that not very far from
T, the experiment is carried out in the absence of possible electron overheating [71, 72] and
pair-breaking effects. In other words, the experiment is carried out in the weak-current limit,
which allows us to perform an Arrhenius analysis of p(7") in order to determine the pinning
activation energy. Finally, let us turn to the selection of specific magnetic field values at which
a major part of the resistivity data will be acquired.

4.5. Matching fields

The j.(B) dependences for all samples were deduced from the CVCs by employing the same
criterion of a voltage drop of 0.1 £V measured in different small perpendicular fields. The data
thus obtained at 0.997T, are presented in figure 10.

Let us consider first the j.(B) curves of the as-grown film for reference purposes. The
Je(B) dependence is a decreasing function of B with a steeper descent at very small magnetic
fields, quasi-linear behavior in the field range of 3-24 mT and tending to zero at higher fields.
The steeper decrease in j.(B) at 0—1 mT can be associated with a very small lower critical
magnetic field value B.;(T') and the penetration of Abrikosov vortices into the sample such that
their motion leads to the appearance of a finite voltage drop already at a very small transport
current. One can also distinguish a smooth ‘shoulder’ in j.(B) between 15 and 19 mT. If one
takes an average field of 17 mT, then, in accordance with the relation a, = 0.5,/3®(/B for a
triangular vortex lattice, some spatial inhomogeneity with a characteristic length close to 300 nm
must be the reason for this. An indication of the origin of this shoulder can be found from a close
inspection of AFM images taken from the sapphire substrates [44]. We find that the average step
edge distance between two neighboring miscut terraces has about the same length scale. These
step edges are known to serve as nucleation sites for adatoms during the film deposition [47].
Overgrown Nb films are known to replicate these terraces [73, 74]. Hence, it is possible that the
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Figure 11. Field dependence pj(B) at 0.997;. for a current density of j =
0.7 kA cm~? and different o, as indicated. The inset shows p;(B) in linear scale.

order parameter in the films is slightly modulated with the same characteristic length scale and
thereby provides this smoothed enhancement of j.(B) at 15-19 mT. Additional evidence for the
validity of this assumption is that this ‘shoulder’ is observed in j.(B) for the as-grown as well
as for the nanostructured samples regardless of «.

The j.(B) curves for the samples with grooves differ substantially from that for the as-
grown film. Even for the case when a transport current flows across the grooves (o = 90°)
and these grooves practically do not hinder the vortex motion along them, the critical current
values are a factor of 1.3 higher than those for the non-structured sample up to 15mT and
tend to approach j.(B) of the as-grown film above 15 mT. This means that a larger amount of
uncorrelated disorder is present in the patterned samples with respect to the as-grown film. Two
additional features in the j.(B) curve are developing as « is reduced from 90° to 0°. One is that
Je acquires larger values at zero field so that the ratio j.(0°)/j.(90°) grows to a value of 1.36.
Another is the appearance of two sharp maxima at fields of 8.8 and 11.7 mT. The peak magnitude
is maximal when o = 0° so that j.(0°, 8.8 mT) is almost equal to j.(0°, 0). The maximum at
8.8 mT is more pronounced than that at 11.7 mT. Assuming a triangular vortex lattice, the peaks
correspond to a vortex—vortex distance of a, =485 and 420 nm, respectively. The presence
of more than one matching field has been previously reported for a complementary pinning
landscape in the form of deposited Co lines [39]. However, most likely due to the smoothed
pinning potential profile in that work [39], the matching peculiarities were less pronounced than
reported in the present case.

To investigate the features arising from the nanostructuring with a higher resolution in
field, all the patterned samples were subjected to direct measurements of p(B) at a very small
dc current density of 0.7 kA cm™2. The results for 7 = 0.997T, are presented in figure 11. All
the p(B) curves are nonlinear increasing functions of the field and saturate to the normal-state
resistivity values at about 35 mT. With a decrease of o from 90° to 0°, two pronounced minima
are developing. The minimum occurring at 8.8 mT exhibits a characteristic drop of two orders
of magnitude, whereas the drop at 11.7mT is much less pronounced, so that p(B) is reduced
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by only about a factor of 2. Taking into account the observed peculiarities in both dependences,
Jje(B) and p(B), we argue that the best geometrical matching between the vortex ensemble and
the underlying structure is achieved at a field of 8.8 mT, which represents the first (fundamental)
matching field [39].

5. Quantification of pinning

5.1. Experimental parameters

We now turn to a thorough analysis of the temperature dependences of the magneto-resistive
response measured for the different « in the patterned samples. A transport current of a small
density 6.4kA cm~2 was chosen for this type of measurement. Selected measurements were
repeated for 0.7 kA cm~2. The temperature range of 7.06-8.61 K (0.827,—T,) was sampled. The
fields B of 5, 8.8, 10, 11.7 and 15 mT, much lower than the upper critical field B, (T, j), were
used. Assuming a triangular vortex lattice, the field values were selected from figures 10 and 11
in such a way that the vortices are made to arrange in different configurations with respect to the
underlying pinning landscape. These correspond to three qualitatively different cases (denoted
by the indexes ‘a’, ‘b’ and ‘c’ in the following): firstly, the field of B, = 8.8 mT corresponds to
the fundamental matching field, i.e. when all the vortices are pinned at the bottom of the grooves
and there are no interstitial vortices. Secondly, a field of B, = 11.7 mT represents the secondary
matching field at which half the total number of vortices are pinned at the groove bottoms and
the remaining vortices are pinned by randomly distributed isotropic (i) pins in between. We will
refer to this field as the field of partial matching. Finally, a field of B, = 15mT is selected as
representative of a mismatching field, i.e. when a major fraction of vortices is interstitial. About
six interstitial vortices per vortex pinned to a groove can be taken as a rough estimate of this
vortex lattice configuration.

5.2. Angle-dependent magneto-resistive response

The behavior of pﬁf(T) for different « and B values differs substantially. The curves in
figures 12(a)—(c) show very good systematic behavior in « and qualitatively resemble those
measured on thin Nb films grown by molecular beam epitaxy on facetted sapphire substrates
in [20]: the smoothed step-like curves pj(T') are clearly anisotropic and their shape strongly
depends on the angle «. In the limiting case of the vortices moving along the grooves, i.e. for
a = 90°, the vortices are influenced only by the i pinning sites. Since a pins are not effective
in impeding this motion, the dissipation is pronounced and this is why a nonzero resistance
‘tail’ is observed. The longer this ‘tail’ the weaker the i pinning is. In the opposite limiting
case, when the grooves effectively pin the vortices, the superconducting state is preserved up
to higher temperatures. When the temperature is increased, the vortices, finally, are thermally
activated from the grooves and the resistive transition in this case is most sharp. For intermediate
a, with increasing temperature, the vortex movement consequently changes its character from
a thermally activated motion to that of viscous flux flow with respect to both the i and a
pinning potentials. With increasing magnetic field, the step-like transitions become smoother,
as expected. In order to quantify the pinning potential parameters we now turn to an Arrhenius
analysis of the even longitudinal resistivity component p; (T).
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Figure 12. The temperature dependence of the even longitudinal magneto-
resistivity component p; (T) for the different grooves orientation with respect
to the transport current, as indicated. The data are collected in a magnetic field
of (a) B, = 8.8 mT corresponding to the fundamental matching field, (b) B, =
11.7mT being the partial matching field and (c) B. = 15 mT as representative
of interstitial vortices. All the curves (a)—(c) are normalized by the flux-flow
resistivity ps, = pnBa/ B2 (T) to augment the difference in their behavior. The
ZFC curve for o« =0° normalized by p, is shown in panel (a) by a solid
line for comparison. The corresponding vortex lattice configurations are shown
schematically in the insets. The corresponding Arrhenius plots In[py /07.1(1/T)
with the deduced activation energies U labeled close to the curves are shown
in panels (d)—(f). Black circles show the temperature point in the linear parts of
the Arrhenius plots used for the exemplary calculation of US; in the text.

5.3. Arrhenius analysis

It is well known [4, 75, 76] that in the limit of small current density the vortex motion in a
pinning potential is of thermally activated character. Thus, an Arrhenius analysis can be applied
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to the temperature dependences of the even longitudinal magneto-resistivity p; in order to
estimate the activation energy produced by the pinning barriers for the vortex motion.

The Arrhenius analysis relies upon the assumption that the resistivity of the sample is
independent of the transport current and is given by Arrhenius law

®)

where pg is a constant and U, is the effective activation energy. Then, if one plots In p versus the
inverse temperature 7! and this curve can be fitted by a straight line, which is the fingerprint of
the thermo-activated character, the slope of the linear part of the Arrhenius plot gives directly the
activation energy U.g. The Arrhenius plots are shown in figures 12(d)—(f). The corresponding
activation energies for the different « values are labeled close to the curves.

From the Arrhenius plots, one can see that the pinning anisotropy in the mixed state plays
a much more important role than the resistivity anisotropy of the patterned sample in the normal
state. The curves practically coincide in the left part of the Arrhenius plots, which corresponds to
the normal state, whereas in the superconducting state their behavior is strongly dependent on
the groove orientation with regard to the transport current direction. For a complete account
of the resistivity data analysis with the help of Arrhenius’ treatment, see [20]. Performing
calculations in the spirit of that work [20], here we show only the main results of this analysis.

We use the stochastic model of the nonlinear single-vortex dynamics under the competing
i and a pinning conditions [20, 32]. In the weak-current limit, for the analysis of In o (T') the
following model function for both pinning potentials is used:

—OUer

kgT
where 6 =1 —T/T. is the normalized deviation from the critical temperature. The effective
pinning potential is given by Uy = Uy — F'b with U, the depth of the potential well. F is the
external force acting on the vortex and b is the characteristic width of the pinning potential. In
general, both probability functions v; and v, can be represented by relation (10) with different
parameters Uy, Uy, b; and b, and variables F; and F,. The quantities related to i and a pinning
are denoted by the appropriate subscripts. The functions v; and v, have the physical meaning
of the probability of overcoming the effective potential barrier of the corresponding pinning
potential.

Previously it has been shown how the general expression for p;(T') can be simplified for
certain limiting cases (see equation (42) of [20]). In particular, for two different nanostructure
orientations for large enough « and low temperatures, one can estimate the value of the term
Fb; and the depth of the i pinning potential well Uy; by solving the system of equations

Fb; = [Ueg(a1) — Uesi(az)1/[sin oy — sin o],

Uoi = [Uegr(ar) sinay — Uegr(az) sin o ]/[sin oy — sin o]

v(T, F)=-exp

(10)

(11)

In particular, let us consider the Arrhenius plot in figure 12(d) for B, = 8.8 mT. For two different
angles a; = 90° and a, = 60° we take the corresponding U&:(90°) from figure 12(d) as 949K
and U%:(60°) = 952 K. Then, from equation (11), one obtains Fb; ~ 22 K. Here and in the
following, the index ‘g’ denotes that this value relates to the i pinning at the groove bottoms.
If the transport current flows perpendicular to the magnetic field, the Lorentz force F acting
on the vortex can be estimated using F = (®y/c) jly, where j = 6.4kA cm™ is the density of
the transport current. Since for B, = 8.8 mT all the vortices are pinned at the groove bottoms,
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Table 2. Left panel: the activation energies U in the patterned structures for the
different « and in the unpatterned reference film. The values are deduced from
the corresponding Arrhenius plots in figures 12 and 13, respectively. The notions
‘fundamental matching’, ‘partial matching’ and ‘interstitial vortices’ relate to
the patterned structures only. Right panel: the calculated width » and depth U,
of the pinning potentials. The i pinning stemming from the nanostructuring is
quantified at the groove regions and between the grooves. The background i
pinning in the unpatterned sample originates from disorder occurring during the

film growth.
Fundamental Partial Interstitial Calculated

Patterned matching matching vortices pinning potential parameters
structures B, =8.8mT B, =11.7mT B,=15mT a pinning  Up, = 6010K
o (deg) Ul (K) UL (K) US, (K) b, =210nm

0 6980 3990 1775 i pinning at

15 4660 3660 1450 the groove  Uj; ~ 970K
30 2810 2380 1135 bottoms  b% A~ 50 nm
45 1640 1480 955 i pinning
60 952 910 825 between U(())l. ~ 830K
75 950 907 818 the grooves b? ~ 50-100 nm
20 049 905 815 i pinning in
Unpatterned the unpat- Ugff ~T60K
film 753 750 747 terned film bfef 2~ 100 nm

l, ~0.85d must be taken for the vortex length instead of the full thickness of the Nb film.
Then, one obtains that b7 ~ 50 nm. From equation (11), the corresponding depth of the i pinning
potential at the groove bottoms U, &~ 970 K. Performing the same analysis for j = 0.7 kA cm™2,
the pinning parameters coincide with those obtained above within an error of 7%. The most
important values are summarized in table 2.

To estimate the a pinning parameters it is supposed that the pinning potential width b,
corresponds to half the period of the nanostructure, i.e. b, = 210 nm. Thus, the product F'b, can
be estimated as ~90 K. The fact that both products, F bf and Fb,, are much smaller than all
measured activation energies Uy in table 2 underlines that the experiment is indeed performed
in the weak-current limit. For the estimation of the depth of the potential well U, the Arrhenius
plot for @ = 0° is considered. It has been previously shown [20] that U%; =~ Uy, + U, in this
case. The thus obtained value is Uy, ~ 6010 K.

The same analysis scheme cannot be directly employed to treat the p;(7') dependences at
11.7 and 15 mT. In these cases, the numbers of vortices pinned by grooves and those pinned in
between them must be appropriately taken into consideration. This includes also the difference
in the vortex lengths and, consequently, the difference in the driving forces acting on the
vortices. Besides, the quantitative calculation of the pinning parameters in these cases is a
rather complex problem. The most crucial issues arising in this regard are reported, e.g., in [77].
These include the coexistence of (temporarily) pinned vortex domains moving with different
correlation lengths of the vortex lattice, dependent on the relative strength of pinning, driving
force and the vortex—vortex interaction. Consequently, a complete quantitative analysis of all
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these phenomena is out side the scope of this work. Nevertheless, we would like to perform a
simplified analysis of the plots in figures 12(b) and (c¢) for @ = 90°, i.e. when vortices experience
only i pinning. In our treatment, we neglect vortex—vortex interactions and do not distinguish
the vortex viscosity for the vortices moving at the groove bottoms from the viscosity for their
movement between the grooves. We, moreover, assume that 7 is the same in the groove regions
and between them. Below, the index ‘0’ will be used for the values related to the vortices moving
between the grooves. Then, the resistivity can be written as follows:

Pi(T) = pyo(T) = [psengve(Tlg/d + p ronove(T)], (12)
where n, and n, are the relative numbers of vortices moving at the groove bottoms and
between the grooves, respectively. The flux-flow resistivities are p, = By®o/nyc* and p o =
By®/noc?. In the following, we use that B, = By, and assume that n, = no. In equation (12),
[, ~ 0.85d stands for the film thickness at the groove bottoms.

Next, we choose a temperature point in the linear parts of the Arrhenius plots in
figures 12(d)—(f), e.g. 1/T =0.12K™! (T =8.333K). From the experimental curves in
figure 12(b) for B, = 11.7mT we obtain v, = 0.038. Then, having substituted n, =no =0.5
in equation (12), the pinning activation energy for the interstitial vortices is U% ~ 800 K. For
B. = 15mT the appropriate fractions of vortices are n, = 0.15 and ny = 0.85, and v, = 0.047
from figure 12(f) can be taken. Then, the almost identical value of UY% ~ 805K ensues for the
interstitial vortices. Taking the values of v, and v, for a set of other temperatures in the range
of 7-8.4K (not shown), we obtain U§j; ~ 800 K. Note that UY; for the interstitial vortices is
smaller than Ug; ~ 815 K for the whole vortex system in figure 12(f), as is reasonable. In this
way, the activation energy for o« = 90° is noticeably decreasing (see table 2) with an increase
of the field from 8.8 mT up to 15mT. As a result, the depth of the i pinning potential Uy,
is decreasing from its value at the groove bottoms, where it is U{i ~ 970K, to the value of
UJ ~ 830K between the grooves. The last value is probed when the vortex lattice no longer
matches the underlying nanostructure and an increasing number of interstitial vortices appear.
This is most likely accompanied by an increase of the period b ~ 50~100 nm of the i pinning
potential along with the reduction of the concentration of i pins out of the groove regions.

For the unpatterned reference sample (see figure 13), a pinning activation energy of
Ul ~ 750K is deduced. Using the current density of j = 0.7 kA cm™2, the film thickness of
d = 52 nm and the pinning potential width of 5! ~ 100 nm, the term Fb™' can be estimated as
~10K. Accordingly, Ujt' ~ 760 K for the as-grown film. Note that b in the patterned sample is
a factor of two smaller than b'*'. Consequently, in the unpatterned reference sample uncorrelated
disorder is less pinning active and the concentration of i pins is smaller with respect to the
patterned sample even if the i pinning between the grooves is compared. Based on these findings
and taking into account the processes occurring during the nanostructuring, we conclude the
presentation of our results with a discussion of all possible mechanisms which are relevant for
the enhancement of pinning in the nanostructured samples.

5.4. Mechanisms of pinning enhancement in nanostructured films

Let us first compare the calculated pinning parameters with the values known from the literature.
For instance, the activation energy for the vortex motion across twinning planes in high-
temperature superconductors is of the order of 1000K [76]. In Nb films grown by molecular
beam epitaxy on facetted sapphire substrates, this value is between 1600 and 4000 K [20].
Accordingly, in the present experiment from the activation energies it appears that the fabricated
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Figure 13. The temperature dependence of the even longitudinal magneto-
resistivity component p; (T) for the unpatterned film at a set of magnetic fields,
as indicated. The data are collected at a current density j of 0.7 kA cm~2. The
curves are normalized by the flux-flow resistivity p s, = pnBa/ B2 (T') to augment
the difference in their behavior. The ZFC curve normalized by p, is shown for
comparison. Inset: the corresponding Arrhenius plots In[p}/pr](1/T) with the
deduced activation energies U.g.

grooves act as very strong a pins. At the same time, background i pinning is revealed to be
weaker than that in [20]. As a consequence of this, the anisotropic effects are clearly visible.

The relative weakness of i pinning in the present work can be attributed to two factors:
(i) due to the non-perfect periodicity [35] of the facetted surface in [20], i pinning was probed
simultaneously in the alternating facet slopes and ridges. (ii) In this work, the film used is a
factor of 2 thicker and thus the thickness-induced suppression of the superconducting order
parameter must be smaller. Due to the possibility of selecting the most likely pinning sites
for the vortices, pinning in different regions of the samples could be probed (see figure 14).
A slight alteration of the amount of Ga and thus a slight suppression of the superconducting
order parameter along the grooves’ bottom is the reason for the somewhat enhanced pinning by
point-like disorder when a vortex is guided by a groove.

Finally, we provide arguments why a pinning caused by the grooves is so strong. We
suppose four different mechanisms which drive the vortices towards groove pinning. Firstly,
the reduction of the length of a vortex being pinned by a groove renders pinning more effective
there due to vortex energy reduction. Secondly, Ga implants stopped in the sample underneath
the milled groove provide strong pins. Thirdly, additional sources of pinning are provided by
the amorphization of and the vacancy generation in Nb caused by the Ga ion bombardment.
Finally, the superconducting order parameter is suppressed due to the reduced film thickness
at the position of the grooves. All these mechanisms have the same effect and cause a rather
strong a pinning potential. In principle, the strength of a pinning can be increased even further.
However, one has to consider that the normal-state resistive response will then be more strongly
anisotropic and the inhomogeneity of the transport current distribution will be more pronounced
in this case.
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Figure 14. Out-of-scale representation of the changes in the structural and the
associated pinning properties of the samples invoked by FIB milling. Cyan
circles correspond to Nb atoms, yellow ones to Ga implants and the background
point-like disorder is shown by empty circles. Dashed lines mark the amorphous
area. Solid cylinders illustrate magnetic vortices pinned by different parts of the
sample: vortex A is pinned by a groove. The groove acts as a strong a pin for
any o # 90°. For a = 90°, the groove provides the enhanced i pinning. Note the
vortex length reduction. Vortex B experiences the virtually unchanged i pinning
occurring during film growth. Vortex C probes the enhanced i pinning caused
by Ga implants during the nanostructuring. To present a qualitative picture, the
depths of the i pinning potential wells are indicated approximately.

6. Conclusion

We have studied the influence of the direct nanoprocessing by FIB milling on the material
composition, magneto-transport and pinning properties of epitaxial Nb(110) thin films via
electrical dc transport measurements. The main results can be formulated as follows: (i) the
employed nanoprocessing has been revealed to change both the normal-state and the mixed-
state properties of the samples, by means of Ga implants in the patterned structures. The
interrelated changes in the structure and the magneto-resistive properties of the FIB-patterned
Nb films have been analyzed. (ii) The normal-state resistivity anisotropy has been shown to be
small, amounting to less than 5% of the normal-state resistivity. The changes in the samples’
resistivity during the nanostructuring have been accounted for quantitatively and allowed for a
calibration of the pre-defined groove depth for given FIB milling parameters. (iii) The pinning
anisotropy in the mixed state has been found to be much more pronounced than the resistivity
anisotropy in the normal state. Two matching fields have been observed for the vortex lattice
with the underlying pinning potential nanolandscape. The magneto-resistive response has been
shown to be most anisotropic for the fundamental matching field. (iv) The pinning potential
parameters for Nb films with FIB-milled WPP nanostructures have been quantified and will
be used in a forthcoming work [41] for the comparison of the experiment with the theory. By
providing a deeper insight into the pinning enhancement mechanisms at work in FIB-patterned
superconductors, we hope to stimulate further research along this line.
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