БЛИЖНЕЕ ЭЛЕКТРОМАГНИТНОЕ ПОЛЕ КОМБИНИРОВАННЫХ ВОЛНОВОДНО-ЩЕЛЕВЫХ ИЗЛУЧАТЕЛЕЙ В МАТЕРИАЛЬНОЙ СРЕДЕ

С.Л. Бердник, В.А. Катрич, М.В. Нестеренко, С.В. Пшеничная

Харьковский национальный университет имени В.Н. Каразина, пл. Свободы, 4, Харьков, 61077, Украина E-mail: Sergey.L.Berdnik@univer.kharkov.ua Поступила в редакцию 9 ноября 2008г.

В строгой самосогласованной постановке решена задача об излучении электромагнитных волн в однородную изотропную среду системой комбинированных волноводно-щелевых излучателей в широкой стенке прямоугольного волновода. Исследовано пространственное распределение интенсивности ближнего поля в полубесконечной материальной среде с электрофизическими параметрами, соответствующими некоторым тканям человека.

КЛЮЧЕВЫЕ СЛОВА: прямоугольный волновод, волноводно-щелевой излучатель, материальная среда, гипертермия, метод Галеркина.

Волноводно-щелевые излучатели и их системы имеют широкие возможности для формирования различных пространственных распределений полей в ближней зоне антенны при заданных электрофизических параметрах окружающей среды, что может быть использовано при создании медицинских аппликаторов для микроволновой гипертермии [1] на основе таких излучателей [2]. Повышения эффективности процесса СВЧ гипертермии можно добиться, на наш взгляд, путем применения полей круговой (эллиптической) поляризации [3], что и является предметом исследований в предлагаемой статье для случая систем комбинированных волноводно-щелевых излучателей в прямоугольном волноводе.

ПОСТАНОВКА И РЕШЕНИЕ ЗАДАЧИ

Рассмотрим систему щелевых излучателей, прорезанных в широкой стенке прямоугольного волновода и излучающих в материальную среду с потерями. Среда характеризуется относительными комплексной диэлектрической проницаемостью $\varepsilon_1 = \varepsilon'_1 - i\varepsilon''_1$ и магнитной проницаемостью $\mu_1 = 1$ (зависимость от времени *t* выбрана в виде $e^{i\omega t}$). Свяжем с волноводом декартову систему координат $\{x, y, z\}$, как это показано на рис. 1. Введем нумерацию щелей и обозначим через $2L_n$ и d_n длину и ширину щели с номером *n*, а через z_n и x_n – соответствующие координаты центра щели в выбранной системе коор-

динат. Тогда электрическое поле, излучаемое *n*ой щелью в материальную среду над бесконечным экраном будет определяться следующим выражением.

$$\vec{E}_{n}(\vec{r}) = -\frac{1}{2\pi} \operatorname{rot} \int_{\varsigma_{n}} \left[\vec{e}_{\varsigma_{n}}(\vec{r}'), \vec{n} \right] \hat{G}^{m}(k_{1}, \vec{r}, \vec{r}') \, d\varsigma_{n} \,, \, (1)$$

а поле системы из N щелей при этом равно

 $\vec{E}(\vec{r}) = \sum_{n=1}^{N} \vec{E}_{n}(\vec{r})$. Здесь \vec{r} – радиус-вектор точки наблюдения с координатами x, y, z; \vec{r}'_{n} – радиусвектор точки источника; \vec{n} – нормаль к поверхности щели; $k = 2\pi/\lambda$, λ – длина волны в свободном пространстве; $k_{1} = k\sqrt{\varepsilon_{1}\mu_{1}}$; $\hat{G}^{m}(k_{1},\vec{r},\vec{r}'_{n})$ – магнитная тензорная функция Грина полупространства (однородного или плоскослоистого);

Рис. 1. Геометрия задачи и принятые обозначения

 $\vec{e}_{\zeta_n}(\vec{r}')$ – электрическое поле на апертуре ζ_n *n*-ой щели. Исходя из условий $d_n/(2L_n) <<1$, $d_n/\lambda <<1$, электрическое поле $\vec{e}_{\zeta_n}(\vec{r}')$ представим в виде разложения по тригонометрическому базису полой области:

$$\vec{e}_{\varsigma_n}(s_n) = \vec{\xi}_n^0 \sum_{q=1}^Q V_{qn} f(s_n), \quad f(s_n) = \sin \frac{q \pi (L_n + s_n)}{2L_n}$$
(2)

где s_n – локальная продольная координата, связанная с *n*-ой щелью; ξ_n^0 – единичные векторы; V_{qn} – неизвестные коэффициенты, определяемые с использованием метода Галеркина из условия непрерывности тангенциальных составляющих полных магнитных полей на внутренних и внешних поверхностях каждой из щелей. В результате, согласно (1) с учетом (2), компоненты электрического поля, излучаемого продольной щелью (ось $\{0s_n\}$ совпадает по направлению с осью $\{0z\}$) с номером *n*, в декартовой системе координат будут равны:

$$E_{xn}(x, y, z) = -\frac{ik}{\pi} \sum_{q=1}^{Q} V_{qn} \int_{-d_n/2 - L_n}^{d_n/2} \sin \frac{q\pi(L_n + s_n)}{2L_n} \frac{e^{-ikR(s_n, \xi_n)}}{R^2(s_n, \xi_n)} \left[+ \frac{1}{\frac{1}{R^2(s_n, \xi_n)}} \right]$$

$$E_{yn}(x, y, z) = \frac{ik}{\pi} \sum_{q=1}^{Q} V_{qn} \int_{-d_n/2 - L_n}^{d_n/2} \sin \frac{q\pi(L_n + s_n)}{2L_n} \frac{e^{-ikR(s_n, \xi_n)}}{R^2(s_n, \xi_n)} \left[+ \frac{1}{\frac{1}{R^2(s_n, \xi_n)}} \right] (x - \xi_n - x_n) ds_n d\xi_n, \quad (3)$$

$$E_{zn}(x, y, z,) = 0,$$

$$R(s_n, \xi_n) = \sqrt{(x - \xi_n - x_n)^2 + y^2 + (z - s_n - z_n)^2}.$$

Компоненты электрического поля, излучаемого поперечной щелью (ось $\{0\xi_n\}$ совпадает по направлению с осью $\{0x\}$) с номером *n* в декартовой системе координат имеют вид:

$$E_{xn}(x, y, z) = 0,$$

$$E_{yn}(x, y, z) = \frac{ik}{\pi} \sum_{q=1}^{Q} V_{qn} \int_{-d_n/2 - L_n}^{d_n/2} \sin \frac{q\pi(L_n + s_n)}{2L_n} \frac{e^{-ikR(s_n, \xi_n)}}{R^2(s_n, \xi_n)} \bigg[1 + \frac{1}{ikR(s_n, \xi_n)} \bigg] (z - \xi_n - z_n) ds_n d\xi_n,$$

$$E_{zn}(x, y, z) = -\frac{ik}{\pi} \sum_{q=1}^{Q} V_{qn} \int_{-d_n/2 - L_n}^{d_n/2} \sin \frac{q\pi(L_n + s_n)}{2L_n} \frac{e^{-ikR(s_n, \xi_n)}}{R^2(s_n, \xi_n)} \bigg[1 + \frac{1}{ikR(s_n, \xi_n)} \bigg] y ds_n d\xi_n,$$

$$R(s_n, \xi_n) = \sqrt{(x - s_n - x_n)^2 + y^2 + (z - \xi_n - z_n)^2}.$$
(4)

В случае комбинации продольных и поперечных щелевых излучателей общим количеством N полное электрическое поле такой системы определяется выражением:

$$\vec{E}(x,y,z) = \vec{x}^0 \sum_{n=1}^N E_{xn}(x,y,z) + \vec{y}^0 \sum_{n=1}^N E_{yn}(x,y,z) + \vec{z}^0 \sum_{n=1}^N E_{zn}(x,y,z) , \qquad (5)$$

где $\vec{x}^{0}, \vec{y}^{0}, \vec{z}^{0}$ – единичные векторы.

ЧИСЛЕННЫЕ РЕЗУЛЬТАТЫ

При использовании щелевых излучателей круговую поляризацию электромагнитного поля можно получить в случае двух взаимно ортогональных щелей, расположенных в широкой стенке волновода так, чтобы при возбуждении волновода основным типом волны разность фаз электрических полей в щелях составляла 90°, а амплитуды полей излучения щелей в направлении нормали к экрану при этом должны быть равны. Таким требованиям удовлетворяют системы, состоящие из двух щелей (рис. 2) – продольной (индекс "1") и поперечной (индекс "2") в широкой стенке прямоугольного волновода (здесь и далее в расчетах $a \times b = 90 \times 45$ мм², h = 2.5 мм, f = 2.45 ГГц), нагруженного на согласованную нагрузку. Волна H_{10} распространяется в положительном направлении оси $\{0z\}$. В первом случае (рис. 2а) длины щелей близки к резонансным при излучении в свободное полупространство: $2L_1 = 59$ мм, $2L_2 = 57.5$ мм; $d_1 = d_2 = 3$ мм, координаты центров щелей – $x_1 = 41$ мм, $z_1 = 29.5$; $x_2 = 10$ мм, $z_2 = 29.9$ мм. Геометрические размеры щелей и их расположение в широкой стенке волновода подобраны таким образом, что в

направлении нормали к плоскости щелей формируется поле с круговой поляризацией. При этом такая система щелей в случае излучения в свободное полупространство ($\varepsilon_1 = \mu_1 = 1$) имеет коэффициент излучения $|S_{\Sigma}|^2 = 0.9$, а коэффициент отражения $|S_{11}| = 0.004$. Геометрические размеры крестообразного излучателя (рис. 26) равны $2L_1 = 2L_2 = 38$ мм, $d_1 = d_2 = 3$ мм; $x_1 = x_2 = 23.5$ мм, $z_1 = z_2$. Такой излуча-

тель также формирует поле с круговой поляризацией в направлении нормали к плоскости щелей.

На рис. 3, 4 приведены нормированные распределения интенсивности ближнего поля $(|\vec{E}(x, y, z)|^2 / |\vec{E}|_{max}^2)$ рассматриваемых систем щелей при излучении в материальные среды с электрофизическими параметрами, соответствующими некоторым тканям человека (кожа – $\varepsilon'_1 = 43.5$, $\varepsilon''_1 = 16.2$, жировая ткань – $\varepsilon'_1 = 5.56$, $\varepsilon''_1 = 0.86$ на частоте f = 2.45 ГГц [4]) в плоскостях y = const.

Рис. 3. Распределение интенсивности ближнего поля системы ортогональных щелей в материальных средах с электрофизическими параметрами, соответствующими коже и жировой ткани

Рис. 4. Распределение интенсивности ближнего поля крестообразной щели в материальных средах с электрофизическими параметрами, соответствующими коже и жировой ткани

Вследствие того, что излучатели формируют поле круговой поляризации, распределение интенсивности ближнего поля антенны в материальной среде на некотором расстоянии y = const становится близким к осесимметричному и поле сконцентрировано в определенной области пространства. Аналогичные результаты можно ожидать и от крестообразных излучателей, образованных двумя щелями в широкой стенке прямоугольного волновода, расположенными под углом 45° к продольной оси волновода, которые также излучают поле с круговой поляризацией.

Для прогрева большой области биологической ткани в микроволновой гипертермии можно применять решетки волноводно-щелевых излучателей (рис. 5). Кроме того, в этом случае увеличивается и коэффициент излучения системы, что повышает эффективность такого аппликатора. Распределения интенсивности нормированного ближнего поля многощелевых систем при излучении в свободное полупространство и в материальную среду с электрофизическими параметрами, соответствующими коже человека, в плоскостях *у* = *const* приведены на рис. 6 и 7.

Рис. 5. Многощелевые системы излучателей

На рис. 6 представлены распределения интенсивности поля излучения системы из 12 крестообразных щелей (рис. 5а), расположенных в широкой стенке прямоугольного волновода ($2L_1 = 38$ мм, $2L_2 = 28$ мм, $d_1 = d_2 = 3$ мм, $x_1 = x_2 = 13$ мм), расстояние между излучателями вдоль оси {0z} равно 21мм. Как видно из графиков, имеет место равномерное вдоль системы распределение интенсивности поля отдельных излучателей при излучении в материальную среду.

Распределения интенсивности поля излучения структуры, изображенной на рис. 56, приведены на рис. 7. Система состоит из 16 продольных и поперечных щелей ($2L_1 = 59 \text{ мм}$, $2L_2 = 56 \text{ мм}$, $d_1 = d_2 = 3 \text{ мм}$, $x_1 = 34 \text{ и } 41 \text{ мм}$, $x_2 = 0 \text{ мм}$), расстояние между щелями вдоль оси {0z} равно 20.87 мм ($\lambda_g/8$, где $\lambda_g - дли-$ на волны в волноводе). Существенно неравномерное распределение интенсивности поля вдоль данной структуры в свободном полупространстве (рис. 7a) становится равномерным при излучении в биологическую среду (рис. 76). Коэффициенты излучения и отражения данной системы щелей равны $|S_{\Sigma}|^2 = 0.93$, $|S_{11}| = 0.24$ при излучении в свободное полупространство, а при излучении в кожу – $|S_{\Sigma}|^2 = 0.25$, $|S_{11}| = 0.002$.

Рис. 6. Распределение интенсивности электрического поля системы крестообразных излучателей при излучении в свободное полупространство (а) и в материальную среду (б) (кожа человека)

Рис. 7. Распределение интенсивности электрического поля многощелевой системы излучателей при излучении в свободное полупространство (а) и в материальную среду (б) (кожа человека)

ЗАКЛЮЧЕНИЕ

Таким образом, на основе взаимно ортогональных и скрещенных щелей в стенках волноводов можно создать аппликаторы для медицинской гипертермии, излучающие поле круговой поляризации. Распределение поля в биологической среде при этом имеет четко выраженный максимум в направлении нормали к плоскости антенны. Используя такие комбинированные системы волноводно-щелевых излучателей можно обеспечить достаточно равномерный прогрев большой области биологической ткани с высоким коэффициентом излучения антенной структуры в целом.

СПИСОК ЛИТЕРАТУРЫ

Kikuchi M. Resent progress of electromagnetic techniques in hyperthermia treatment. IEICE Trans. Commun., 1995, V. E78-B, p. 799-808.

- Бердник С.Л., Катрич В.А., Нестеренко М.В. Ближние поля решеток волноводно-щелевых излучателей в материальной среде. В кн.: 17-я Междунар. Крымская конф. "СВЧ-техника и телекоммуникационные технологии" (КрыМиКо'2007). Материалы конф. [Севастополь, 10-14сент. 2007г.].-Севастополь: Вебер, 2007, с.739-740. Дахов В.М., Катрич В.А., Нестеренко М.В. Излучение системы скрещенных вибраторов над проводящей плоскостью в плоскослоистую среду с потерями. Вестник Днепропетровского ун-та, серия "Физика. Радиоэлектроника", 2008, вып.15, №2/1. с.129-139.
- 4. Березовский В.А., Колотилов Н.Н. Биофизические характеристики тканей человека. Справочник. Киев: Наукова думка, 1990, 224 с.