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FOREWORD

After a long period of studying various phenomena in the field of plasma
electronics, under the influence of such renowned scientists and teachers
of the Faculty of Physics and Technology as Y. B. Fainberg, V. D. Shapiro,
V. G. Baryakhtar, A. G. Sitenko, K. N. Stepanov and others, as a result of joint
work with my PhD supervisor A. N. Kindratenko, the range of tasks has so-
mewhat expanded. Remarkable books by V. L. Ginzburg and A. A. Rukhadze
(he was a reviewer of the russian-language version of the presented monograph),
V. P. Silin, V. N. Tsitovich and V. 1. Karpman, as well as personal contact with
some of them, as well as with N. A. Armand, V. M. Yakovenko, Yu. A. Roma-
nov, S. S. Moiseev, Yu. L. Klimontovich, H. Wilhelmson and many others have
contributed to this fact.

The internship and preparation of my diploma at the KIPT, work in the
IRE, IKI, as well as a participation in the seminar delivered by V.P. Silin, for
productive communication with whom I am sincerely grateful, have played an
important role in broadening the horizons. Business trips to Haifa to L. M. Pismen
and to Hamburg to K. Shuneman were effective. The works that are included
this book is far from all that was performed during the period of scientific
activity. However, they seemed the most interesting to the author and have
an obvious prospect for further research.

Attention to the role of spontaneous emission in physical processes was
attracted by the works by V. L. Ginzburg, A. G. Sitenko, V. N. Tsytovich; this
issue was also taught at lectures by V. I. Kurilko and raised in discussions with
I. F. Kharchenko. Similar questions also arose during the preparation for publi-
cation of the monograph “Fundamentals of Plasma Electronics” in collaboration
with A. N. Kindratenko. This made it necessary to understand the general structure
of the description of spontaneous and induced phenomena in quantum and, most
of all, in classical models. The competition between spontaneous and induced
processes was also used in the universal system of equations, which describe
turbulent-wave instability, obtained under the influence of S. S. Moiseev’s ideas.

A new threshold for the induced radiation emergence, which me and
A. G. Zagorodny discovered, due to its competition with spontaneous processes,
made it possible to understand the nature of the formation of coherent pulses
with intensities comparable to spontaneous emission at extremely low levels
of inversion.

The works by A. M. Fedorchenko and N. Ya. Kotsarenko, and later by
L. M. Gorbunov, prompted a search for a simpler description of the spatiotem-
poral dynamics of multi-wave processes.

An interesting effect of anomalous energy extraction from a beam of
charged particles in a medium with a noticeable absorption of RF energy,
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discovered jointly with A. N. Kindratenko and V. I. Tkachenko, was evaluated
by Yu. A. Romanov and colleagues in Nizhny Novgorod. It forced to delve into
the details of similar processes. A decrease in the level of absorption of the
medium due to nonlinear mechanisms brought to life a number of works on the
transitions of dissipative processes to reactive ones.

Great interest to the problems of particle acceleration in wake fields of
bunches made it possible to be one of the first who published works on a self-
consistent description of the dynamics of bunches in the self-radiation field.
Later this made it possible to understand the connection of this phenomenon,
first with dissipative regimes of beam instabilities, and then with superradiance,
which it is more likely to be.

The emergence of low-density plasma arising from the operation of po-
werful gyrotrons, the theory of which was previously created by Nizhny Novgorod
scientists, made me and my co-authors (K. Shuneman and G. 1. Zaginailov) to
understand the description of the excitation of cyclotron oscillations. However, the
inclusion of the finite Larmor radius in the problems of generation of longitudinal
waves in plasma waveguides was previously performed with J. Krusha.

The discovery of the phenomenon of the formation of self-similar
structures in wave media as a result of modulation instability allowed us,
together with A. V. Kirichok and O. V. Kuklina, to systematically study this
phenomenon. Later, it was possible to clarify the nature of the formation of
these structures and in collaboration with E. V. Belkin to conduct numerical
experiments, which showed agreement with analytical estimates.

The great interest of the scientific community for the emergence of waves
of anomalous amplitude in the ocean made us recall the approaches of the
S-theory constructed by V. S. Lvov and V. E. Zakharov in order to describe the
excitation of spin waves. Using the modified S-theory developed with the help
of V. M. Vorobyov, it was possible to understand the nature of stimulated
interference and to explain the formation of waves of anomalous amplitude and
bursts of modulation, the intensity of which was an order of magnitude higher
than average levels. It was not difficult to create a description of the behavior
of waves on the surface of the ocean according to the S-theory. The verification
of the S-theory was carried out later using wave propagation examples
in waveguides and in the ocean by comparing previous data obtained by
E. V. Belkin with direct calculations by A. V. Priymak.

The generalization of the system of equations of V. P. Silin and the
construction of the so-called Silin model of parametric instability of the
Langmuir wave in cold plasma was a successful research result of the mid-80s.
First numerical experiments performed in collaboration with I. P. Panchenko
and S. M. Sevidov showed a deep modulation of plasma density and energy
transfer to ions, which was previously discovered during the development of
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modulation instability in various modifications of the V. E. Zakharov’s model.
The comparison of the parametric instability of V.P. Silin with the well-known
model of V. E. Zakharov of the modulation instability of the Langmuir wave
in nonisothermal plasma in recent years, carried out with A. G. Zagorodny and
A. V. Kirichok with the help of A. V. Priymak, revealed direct connection bet-
ween these processes.

By analyzing research results of convection in a thin layer of liquid and gas,
it was possible to detect the existence of structural-phase transitions between
metastable and stable states. Together with I. V. Gushchin and A. V. Kirichok,
a state function was found and a model of such phenomena was constructed.
Recently, a large volume of new results that provoked some corrections to the
sections of the book was carried out in collaboration with E. V. Poklonsky.

The reader may also be interested in a new look at the nature of the
Maossbauer effect, presented together with A. G. Zagorodny and A. V. Kirichok.
It was the support of V. G. Kirichenko and the calculations carried out with
O. V. Kuklina that made it possible to come close to the solution of this
problem. With 1. P. Panchenko, we estimated V. P. Silin's generalized models
describing intense oscillations of the coefficient of reflection of an electro-
magnetic wave from a plasma surface. Also we discovered the phenomenon
of modulation instability in developed convection, where the help of A. V. Kiri-
chok was needed. This task of finding the conditions for the development
of a “regular” hydrodynamic dynamo was posed by S. S. Moiseev on the basis
of the description model developed by L. M. Pismen.

In conclusion, special thanks should be expressed for the support and
attention of A. N. Kindratenko, to my colleagues V. A. Buts, A. G. Zagorodny,
V. 1. Karas and V. V. Yanovsky, as well as A. V. Kirichok, which have sup-
ported me in recent years, especially in the successful publication of a series
of scientific works “Problems of Theoretical Physics”. Although there is no
way to list everyone who supported me in the search for solutions, in discus-
sions and implementation, I am also very grateful to all of them.

Author



INTRODUCTION

The book discusses the problems and tasks to which the author arose
interest, and to which he was most directly related. However, the solution of these
tasks would be impossible without the devoted participation of both eminent and
junior colleagues, as well as students who just started their scientific career. Only
a few tasks were solved in a relatively short time, but the bulk of the work
continued for years, and sometimes decades. Such a tender interest of the author
and his colleagues in certain topics was caused by revealing new sides of the same
processes, as well as with the discovery of links between completely different
phenomena. It seems that fate did not let go away from the selected topics,
predetermining the direction of thought.

In the first chapter of the first part of the book, spontaneous and induced
processes in wave-particle and wave-wave interactions are considered. It is shown
how, using the expression for spontaneous emission, one can easily and correctly
obtain the terms of the equations that determine the induced processes, the
procedure of direct calculation of which is sometimes very difficult. Additionally,
a description of the radiation of the electromagnetic field by an active medium in
the framework of the semiclassical theory is presented.

The second chapter discusses the new threshold of induced radiation.
A mechanisms for the formation of coherent pulse is presented; it should be noted
that their intensity is comparable or greater than the intensity of the spontaneous
field near the detected new threshold of the induced radiation.

Near this threshold, it is also possible to generate periodic pulses of coherent
radiation, which are formed as a result of competition between spontaneous and
induced processes. The dynamics of instability in the same proximity to the
threshold of induced radiation, which leads to an increase in turbulent pulsations
under the action of an external wave, 1s discussed.

The third chapter presents the spatio-temporal dynamics of the develop-
ment of several types of instabilities. It is noted that the consideration of the
nonlinearity of wave motions has little effect on the nature of spatio-temporal
dynamics, since the dispersion properties of natural waves in a medium a much
greater extent determine their behavior in comparison with different types
of nonlinear mechanisms, at least in the vast majority of cases. It is shown
that the analysis of such dynamics is significantly simplified by the transition
to a moving coordinate system.

In the fourth chapter, we consider the effect of anomalous energy extraction
from a beam of charged particles due to the occurrence of mutually synchronized
deceleration of the wave and the beam particles captured by the field under
conditions of a noticeable level of wave energy absorption in the system.
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It is shown that the account of nonlinearity in dissipation mechanisms, as a rule,
reduces its average value.

The similarity of dissipative instabilities and superradiance is discussed in
the fifth chapter, in particular, on the example of radiation from a short electron
beam moving in plasma. Superradiance, the basis of which is the interaction bet-
ween particles or oscillators by means of a field radiated by each of them, in its
classical representation is determined by the processes of their spatial and/or phase
synchronization, which is enhanced when their mobility is taken into account.

In the sixth chapter, the processes of excitation by electron beams of
electromagnetic waves of different polarization in magnetically active waveguides
are studied. Low-density plasma is taken into account in traditional equations
that describe the generation of oscillations in gyrotrons; the influence on the
nature of the processes of the finite radius of rotation of the beam electrons
is discussed.

The seventh chapter explains the emergence of a cascade of modulation
instabilities near the threshold of their development, forming self-similar
structures by narrowing the spectra of each separate process and creating the
conditions for the development of a new, larger-scale one. At the same time,
increasingly large-scale modulations (envelopes) of the main structure appear.
The narrow spectra of each instability of the cascade form a self-similar spatial
structure clearly observed on each scale.

The eighth chapter presents the phenomena of the formation of waves and
their envelopes of large amplitude during the development of modulation
instability of intense wave motion. The nature and frequency of the emergence
of gravitational waves of anomalous amplitude on the surface of the ocean
are discussed.

The ninth chapter makes it possible to compare the Silin and Zakharov
models of the modulation instability of Langmuir waves, respectively, in cold
and non-isothermal plasmas. It is shown that in the developed instability
regime, the fraction of energy transferred to ions does not exceed 5—6 % of the
initial field energy, the ion velocity distribution is close to Maxwellian, which
allows us to speak about their temperature.

In the tenth chapter, structural-phase transitions in a thin layer of
convection of liquid or gas are considered. A state function 1s presented, and the
characteristic time of each next structural — phase transition increases, and
changes in the state function decrease.

The second part of the book includes annexes to the discussed issues,
allowing you to understand the formalisms for the effects under consideration.
Nevertheless, some topics in the second part are of independent interest, for
example, the nature of distributed defects in a solid body, the estimation of
the number of defects by the spectral characteristics of the spatial structure,
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self-similar nanostructures on the surface of graphite, and a new understanding
of the mechanism of the Mdssbauer effect.

Very often, the pioneering works of talented scientists who turned to
a physical phenomenon reveal only one, as a rule qualitative aspect of the pheno-
menon. At the same time, real physical mechanisms that already quantitatively
determine the process, are remain unseen and usually clarified later as a result
of attracting the attention of the scientific community to this effect or pheno-
menon.For example, the nonlinear damping of intense Langmuir waves, which
led to its heating, was often explained by the Landau damping in the emerging
collapsing caverns of plasma density, which apparently takes place only to
some extent.

However, multiple scattering by numerous caverns-field inhomogeneities,
arising from instability is the decisive mechanism for the transfer of field
energy to ions and their further thermalization is multiple scattering by numerous
caverns-field inhomogeneities arising from instability (for more details, see
Section 21). Waves of anomalous amplitude under specific conditions, which are
presented as permanently existing and which unpredictably occur under these
conditions as an autowaves, that is soliton-like perturbations with variable
amplitude in nonequilibrium media, are actually very definitely generated by
modulation instability. In its turn, it forms a wave (or envelope) of anomalous
amplitude due to the forced interference of the modes of the instability spectrum
under the influence of wave motion. The nature of the Mossbauer effect can also
be quite simply explained by the characteristics of the radiation of atoms with
excited nucleus, which are oscillating in potential wells of the crystal structure.

Such topics of given research in annexes as the wake field and self-
modulation of an electron bunch moving in a plasma, abnormal oscillations
of the reflection coefficient of the electromagnetic wave from the plasma
surface and a number of others can be of interest for readers.

Extra edition of this book in English made it possible to correct the errors
and add explanations of some of the issues raised in the discussions in the
annexes at the end of the book.
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CHAPTER 1. Spontaneous and induced radiation

The features of describing the processes of spontaneous and
stimulated emission of particles and waves are presented. The role of
spontaneous noise in the injection of a beam of charged particles and
the transition to the development of beam instability are discussed.
The process of wave generation by current, which is the result of the
interaction of other waves, is considered; it is shown that this
phenomenon is in the nature of spontaneous emission. Using the
expression for the intensity of such radiation, the nonlinear terms
of the equation that describes the processes of induced interaction
can be obtained. Thus, a simple connection between expressions for
spontaneous and induced emission of particles and waves is shown.

SECTION 1.
TWO-LEVEL SYSTEM

In the most general case, particle radiation can be either spontaneous and
independent of external influence, or stimulated and imposed by an intense
external field. In nonequilibrium systems and media all these phenomena
acquire collective properties. The connection of stimulated or induced radiation
with similar spontaneous processes was discovered and described in the work
by A. Einstein [1-1] and experimentally confirmed by R. Ladenburg (see links
in the review paper [1-2]).

Let us consider a particle that has an eigen-field. If this field or its part does
not propagate independently of the particle and accompany the particle, then there
is no radiation. The work of the field on the particle in this case will be zero.
However, if during translational particle motion (for example, at a speed of
a higher velocity of the waves of the medium [1-3] — [1-5]) or oscillatory particle
motion (dipole) we shall consider the field of a particle, then under certain
conditions there will be a part that will be capable to spread in the medium
independently.

The work of this part of the field on the particle will not be zero and will
lead to its inhibition or to a decrease in the amplitude of the oscillations,
respectively, which is a sign of the presence of radiation of the field energy
by the particle [1-6].

It is also important to note that the value of the work of the particle self -
field on its intrinsic current is always sign-defined and describes only the



~14 ~ Selected chapters (theoretical physics)

radiation process. By the way, this sign-definiteness is one of the characteristic
signs of spontaneous processes.

Another characteristic feature of spontaneous emission is the fact that its
sources are independent and the radiation process is not depends on a wave at
given frequency that exists in a medium or system (see, for example, [1-7]. The
induced radiation is due to the fact that an external field in the entire interaction
space modulates the movement of particles of the medium. In this case,
radiation (or absorption) of many particles located at different points in space
occurs in phase with this field.

Ch. H. Townes drew attention to this fact in his Nobel lecture:
“... the energy radiated by molecular systems has the same field distribution
and the same frequency as the inducing radiation, and, therefore, a constant
(possibly zero) phase difference” [1-8].

Such radiation and particle absorption synchronized by an external field
leads to a sharp increase in the efficiency of interaction between particles and the
field. We shall note right away that the presence of processes that violate the phase
matching of the external field and the particle motion imposed by this field can
weaken the effectiveness of such an interaction. The cause of the induced
(stimulated) radiation, as it turned out, is the presence of population inversion
(a positively defined difference of particles at higher and lower energy levels)
[1-1]. According to A. Einstein, if there is radiation at the transition frequency
&—¢& =hay,, the description of the simplest one-dimensional two-level system is:

Oy [ Ot =~y + 5, - N ) 1, +W, - N o1 (1.1)
O,/ Ot ==, N1y +0ty +03 N ) 1, (1.2)
along with this, the total number of particles in the first and second levels is
constant n, +mn, = Const, u,,, is the rate of change in the number of quanta

of the second excited level due to spontaneous radiation processes. The rate of
change in the number of quanta (particles) at these levels is due to the induced
processes of radiation ;-\, -1, and absorption w,-N,-n. Here N, — is the

number of radiation quanta (spectral density) at the transition frequency, for
which the equation takes the following form:

ON
8—f:<%1+w21'Nk)'”2_(w12'Nk)'”1- (1.3)

In statistical equilibrium at temperature T, derivatives are On /0t=0 and

n, =const-exp{—, / KT}, in this case &, is the energy of particles in the i-th
state. In case of statistical equilibrium, the number of radiation quanta
N, = N,, shall be valid for the radiation intensity, where the right-hand side
is determined by the Planck formula
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1
KO exp{hw /kT}—1" (1.4)

and when calculating the integrated intensity, the summation is carried out over

N

the wave numbers, while @ = a)(l_é) and expression (1.4) retains its form

regardless of the dimension of the problem.
For equation (1.3) to remain valid in the state of statistical equilibrium,
it 1s necessary that the expression

Uy
W, exp {ha [ KT} —w,, (1.5)

Ny =
shall coincide with Planck's formula (1.4). In other words, the number of
radiation quanta take the following form for the coefficients

Ugy = Wy = Wy, . (1.6)

Let us note that in a 3D case, the relation between the coefficients
U,, and w,, can be represented as it follows

u 207
Wy, W-Db,, 7C
where A,, and B,, - are corresponding Einstein coefficients. The

dimension of this ratio is time per unit volume, since we are talking about
the spectral density of quanta. For yellow light, the numerical value is

g~0.25, whereas for violet g =~ 0.6 is at the edge of the visible spectrum.
Using the obtained relations, equation (1.3) can be represented as
ON )Y

I Y .
57 >+ 8(hw)Nk hw, (1.7)

WhereuZI-(n2—m):um-[n(gz)—n(gl)]:%-ha):%-ha), & =¢& +ho, and

2 =u, -n, =u, -n(e,).
It is useful to introduce the notion of population inversion © = (n, —n,) .
If the initial values of n,(0)>>N, (0),n,(0), and x > 0, then spontaneous
processes can be neglected. In this case
Op
E:_Q%l'M'Nk:_Q’V'Nk- (1.8)
Let us pay attention to the fact that only taking into account the induced

processes, it is possible to detect instability during a significant inversion of the
level populations — a rapid increase of the number of field quanta [V, at the

initial stage oc exp{~y -t} with an increment equal to 7y, when changes in the
inversion can be neglected (see annex I).
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SECTION 2.
SPONTANEOUS AND INDUCED RADIATION
OF ELECTRON BEAM PARTICLES IN PLASMA

Let us consider the process of spontaneous emission of plasma (Langmuir)
waves by a single electron moving with speed in the direction of the OZ axis. For
simplicity, we restrict ourselves to the one-dimensional case [2-1] (see also [2-2]).
Let us imagine the electron charge density in the following form

p=——e-8v-t—2z+35). (2.1)

In this one-dimensional representation, beam particles emit and absorb

quanta of longitudinal (Langmuir) waves — plasmons whose energy is equal to

ha k). Let us determine the number of longitudinal wave quanta emitted per

unit time in the interval of wave numbers dk in cases of spontaneous and
induced processes n_u,_dk and n_w N, dk, respectively.
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In this case, particles emitting a plasmon pass from state m to state n.
In the same wavelength range, let us similarly determine the plasmon absorption

rate as n w N dk , where 7, is the number of particles in the state m,

and Nkis the number of field quanta, v,,, W,,, w are the coefficients

in A. Einstein equations for this case. The equations that describe the change
in the number of particles at the upper and lower energy levels have a form
similar to (1.1) and (1.2):

8nm/at:_(umn+wmn'Nk>'nm+wnm'Nk'nn’ (22)
Ony, | Ob =ty N1, Hthyy, 0 N )13, (23)

In thermal equilibrium, obviously 7 / n = exp{ﬁw(k) / T)}, the number

of emitted and absorbed field quanta is equal (the Boltzmann constant will be
assumed equal to unity here and below), and the Planck formula

N, =lexp{hw(t) / T} —1]"is valid for the number of field quanta, which
also leads to the relation © =w =w . Thus, in the nonequilibrium case,

in order to describe the dynamics of the number of plasmons, we shall obtain
the equation

dN, /dt=u, -n {1-n/n) N, +1} (2.4)

Let us note that a change in the energy density of plasmons

dE, /dt =hw(k)-u, -n, in the absence of other mechanisms of radiation
and absorption of their energy, in addition to spontaneous and induced radiation

of beam particles, is equal to the loss of its energy per unit time w(k) . With
this in mind, equation (2.4) takes the form:

dE, | dt =w(k)-{(1-n, / n,)-N, +1}. 2.5)
The change in the momentum of particles upon plasmon radiation is,
m-(v,,—v,)=hk whence it follows v =v +hk/m, which is also the case if the

velocity interval, where the particle distribution function changes significantly,
exceeds %k /m , then

n, [ n, =, =k /m)/ f(v,) 1=k /m)-df(v,)/ fv,)dt. (2.6)
and equation (2.5) takes the form (see annex II)
dE, | dt =27 (k)| k] {f;[eAk)/ k] +E, (ke / alk)-m)-of, (V) V|t —OpEr> (2.7)
2rte’w?
mk?
plasma instability in the absence of plasmon energy loss, 0, is the damping
decrement in the plasma in the absence of a particle beam.

where y, = Ofy (V) / OV |,_yyi 18 the linear increment of the beam-
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By the way, the equality of the coefficients v =w =w ., as well as the
dependence of the term responsible for the induced processes on N, , allows us

to present expression (2.7) in a more general form

)3
dN, /dt =X > =X IN = +—"F :

where 2. n, 18 the change in the number of quanta of radiation energy

E, =hw- N, due to spontaneous processes per unit time, and the transition

Em — En corresponds to quantum radiation 1@, i.e.

82’”751(,0— 02 1 ®
oe | ohw) (2.9)

2,=2,=2(,)-2(,)=

where ¥ =3(¢,)=2(¢, +ho).

Cases of describing spontaneous and induced radiation are considered in
more detail in the review [2-3]. Let us consider the noise level, that is, the
intensity of plasma turbulence in a non-dissipative medium. In plasma without
a beam, the intensity of plasma turbulence (fluctuations) is determined by

E, oc T . When a beam is injected below the instability threshold (or in spectral

regions where instability does not develop), the noise level can increase
significantly, for example, if the beam temperature is comparable to or higher
than the plasma temperature.

Indeed, for the Maxwellian velocity distribution function of electrons
Jop =110/ \/?TVTb]'GXp{—(V—VOb)z/ v}, under stationary conditions, we shall find
that the noise intensity can reach order values (see annex II)

__ o)
“ o wo(k)- kv,
due to spontaneous radiation of the beam in the region of high phase velocities
(k) > kv,, (y, <0) even under conditions of negligible energy losses (0, —0).

Ty (2.10)

In the region of low phase velocities @(k) > kv, (in this case y, >0),

the growth of fluctuations can be restrained only by dissipative processes
(0, > 7,) in the plasma

E, =y, -w(k) T,/ (kvy, —0)(6p —7.). (2.11)

When approaching the instability threshold (determined from the condition
5D =, ), the level of spectral density of oscillations rapidly and explosively
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increases. This, in particular, improves the starting conditions for the development
of instability. The abnormal growth of fluctuations in this case is similar to the
well-known phenomenon of critical opalescence when the system parameters
approach the instability threshold — the region of phase transition.

A significant increase in noise in the system during beam injection
in wide spectral ranges, even outside the instability region, was discovered
as far back as the first experiments on plasma-beam interaction [2-4 — 2-5].

It should be noted that an increase in the number of quanta of the
spontaneous field per unit time in the interaction volume in the quantum case or
an increase of the field energy in the classical descriptions have some features
that distinguish them from the case of an energy increase of the induced field
during the development of instability. First of all, the spontaneous fields of
individual oscillators or beam particles (if they are uniformly distributed and in
the absence of external synchronization mechanisms) differ in phase, which,
generally speaking, at least at the initial moment, is random, that is, sponta-
neous emission is uniformly distributed and not phased emitters are incoherent.

The change in the energy of spontaneous emission per unit time is
proportional to the number of emitters. The field of spontaneous emission
grows linearly, but starting from some moment, the grouping of emitters may
turn out to be such that the induced radiation can intercept the initiative. This
growth of induced radiation occurs exponentially and that part of the field is
formed in which the coherence fraction is high, that is, the phases of many
individual emitters are slightly different from each other.

In this case the change in the field energy per unit time is proportional
to the square of the number of synchronized oscillators. Moreover, such
synchronization occurs under the influence of the emitted wave and is controlled
by it. A certain and constantly growing level of the spontaneous component of
radiation, which has the character of increasing noise, should also be taken into
account, especially in the regimes of long pulses of corpuscular and wave pumping.

If in the absence of dissipative processes, a quantity
of,(v)/ov|,_, k> 0 1s possible, instability can develop, which is an

2.2
exponential increase with the increment 7. = 27;%8]‘ y(v)/0v |v=a)(k)/k
of the wave with frequency » and wave number £, that is, the wave field is
presented as E(f)-exp{—iwt+ikx}by only one mode in the spectrum. The
implementation of such a single-mode regime is possible taking into account
a special selection of initial conditions. In this case, an increasing part of the

beam particles, which velocities are not equal to the phase velocity sza)/ k

of the wave but are close enough (i.e., so-called non-resonant particles), are
trapped by the wave in its potential well.
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The equations, describing the nonlinear dynamics of the wave excited by
a particle beam (here of electrons), in the absence of energy absorption in the

medium, have the form (see annex II):
1/2

n
O0A/ 0t =8r- j dg o j dnyn,exp{-2rit}, (2.12)
-n

-1/2
2m-d*E ) dr* =2r-dn/ dr =—Re[A-exp{27i&}], (2.13)
where %2(4”827101,/ meo)l/2 is the plasma frequency of the electron beam, and

@y, = (472?2’7@0)/ meo)l/z 1s the Langmuir frequency of the plasma (here,
e, M, , 1,5 1, 1S the charge, rest mass of the electron, and the unperturbed density
of the beam and plasma), 27&, =kz, —at and 7, = (kv—®,,)/ 27y . Here, the

position of each particle in the beam is determined by the value & , and the
velocity is defined by the quantity 77. The integration in (2.12) is carried out
over the initial values of the coordinate and velocity of the particles, i.e.,
& =5 =0) and 7,=n(=0). Moreover, to simplify the description, let us
assume that the derivative of the velocity distribution function in the vicinity of
the phase velocity of the wave is df,(v)/v|_,q,, and it is proportional to the

velocity [2-5].
We can estimate the average oscillation frequency QTR of trapped particles

in the potential well of the wave Q.. =./ekE/m,, . As a result of such

oscillatory motion of the captured particles, the sign of the derivative of the
distribution function in the vicinity of the phase velocity of the wave changes
[2-7 — 2-8]. Such a change in the sign of the derivative can lead to an oscillatory
change in the direction of the process, i.e. to a sequential change in the radiation
of field quanta to their absorption and vice versa.

Let us note that the change in sign of the derivative of the distribution
function is due to the dynamics of the beam particles in the wave field, which is
represented by the second equation of the system (2.13). This process takes into
account the nonlocality of the processes of interaction between the beam
particles and the wave.

It is useful to introduce into consideration the parameter QTR /vy , that,

during instability, gradually increases from the initial values of much smaller
units. When this parameter reaches the value of the order of unit, the instability
saturates [2-9]. Subsequently, an energy exchange takes place between the

wave and trapped particles [2-6] with characteristic time Q' ~y,”'. Due to

the mixing of particles in the potential well of the wave, oscillations of the
wave intensity rapidly decay.
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SECTION 3.
SPONTANEOUS AND INDUCED EFFECTS
WITHIN THE FRAME OF THE THREE-WAVE INTERACTION

In the case of multiwave interaction induced processes are very diverse
in contrast to the wave-particle systems, one of which was discussed
in the previous section. For definiteness, let us consider the interaction
in a nonisothermal plasma of three sound waves whose frequencies and
wave numbers are comparable (for the first time, such a “decay” process was
considered in [3-1]). At the same time, let us digress from the notions
of compact wave packets and random changes in their phases [3-2, 3-3].

Lettwo waves with frequencies @, and @, propagating in a nonlinear
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medium excite a nonlinear current 523 capable of fulfilling the conditions
of space-time synchronism'

o, =@, +®, and Elle?JrEg, (3.1)
of emitting quanta of the field of a natural wave of a medium (eigenmode)
ata frequency @, .

If we take into account the action of waves with frequencies ®,, ®,

and neglect the effect of the field of the first wave with frequency , on this

nonlinear current J,;, then such a process of emission of field quanta /iw, could

be considered spontaneous. However, if the field of the first wave, for example,
accumulates in the interaction space and its amplitude becomes significant, the
effect of this field on the nonlinear current J,; will no longer be neglected.

In this case, we can talk about the interaction of three waves, moreover,
the phase synchronization of the modes and the formation of a coherent field
takes place with the self-consistent participation of all interacting waves.

At the frequency of the first wave, the character of energy exchange,
accurate to the fourth order of smallness, 1s determined from the amplitudes
of the interacting waves by the relation

(Jos + JINET + E3) = Joy - Egy + oy By + J1VET, 3.2)
where, for the field strength at the frequency w,, the first Egl) and second

EQ* , order quantities are retained, and for the currents, the second Jp3 and

third j1(3) order magnitudes in wave amplitudes are retained.
The first term on the right-hand side of (3.2) is responsible for the processes
of interaction between the current J,; and the field £, = £, (j,,) formed by this

~

current at combination frequencies. The origin of the current j,; is due to the
nonlinear interaction of oscillations at frequencies @, and @ ,. These processes
under the conditions of space-time synchronism (3.1) can lead to the generation of
radiation at the frequency of the first wave, and this generation with respect to this
wave has the characteristic features of a spontaneous process, as it is shown below.

The second term (3.2) can be considered responsible for the processes of
interaction of three waves at once. The last term determines the induced processes

of radiation and absorption of field quanta at the frequency ), of the first wave.

If the real part of this expression is nonzero, then induced radiation or absorption
of field quanta at a frequency ), is possible.

!'Here, the case of the synthesis of two waves, that is, the process opposite to decay.
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The second term (3.2) dominates in the well-studied processes of three-
wave interaction, and the role of the third term is reduced only to corrections to
the slow phases and partly the wave amplitudes (see, for example, [3-4, 3-5]).

In case of a multi-wave interaction, violations of the coherence of radiation
as well as the interaction efficiency are possible, because these phenomena
are determined by the dispersion that generates phase mismatches of the
spatiotemporal synchronism. It is not uncommon for a multiwave interaction
to have a phase mismatch A between the frequencies of the waves participating
in the interaction. Moreover, the first of relations (3.1) takes the form

=0, —wy=A,,,=4. (3.3)

Without taking into account self-interaction (the term is proportional

to ocNf), the equation for the number of quanta at a frequency @, can be

formally written (see annex III) in the following form (the possibility of such a
presentation was indicated before in the report [3-6])

AN, 1t =4 B %+ %, B =

MVVD (3.4)

where

2 2
zzai[ ¢ j@% % -8 [ ¢ jam(@+%} (3.5)
mivs >

3n\my, ) o, w,> O(hew) ' 30’ o |0, o,
and define
2 —
oz 8¢ {(W2+ha)2)(W3+ha)3) VVQWJ/;M)1 L8 e (mm (3.6
ahe) “3h ] 0,0, "3y 7| @, @ ha)l
i’S

The presence of sufficiently wide spectra can lead to the following equations

(9]\7 !
k =a: wz oV +w{%NI§ "’O‘Nkzk:[Nk' +N.l, G

k@t

The terms, correspondlng to the three-wave interaction are excluded here.

It occurs due to averaging over turbulent pulsations. Without taking into account
self-interaction (see annex III for more on this), equation (3.7) takes the form

ON e,

@(b w1
0P _w Z kk|+§{§N§+Nka:[Nkv+Nk—k']- (3.8)

a—tk:E’”Lhw’fN’“a(h—wk)Ek’ (3.9)
where
2 2
5, =w- ozz e W8T/ 3(my ), (3.10)
6
ha)ka@(h—a)k)zk = a-w-Nk;[Nk. +N, ]
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It 1s important to note that in equation (3.4), the relation between the
expression for spontaneous emission (the first term of the right-hand side) and
the expression for the induced processes of radiation and absorption (the third
term of the right-hand side) coincides in form and meaning with the
corresponding expressions in the equations (1.7) and (2.8).

It should be noted that the first terms (3.7) and (3.8) are of the same order
as the last terms of these equations. This sometimes gives reason to consider the
physical mechanisms for which they are responsible, of the same type, which
is far from the case.

In addition, the generation of oscillations at a frequency @, , determined by

the first terms on the right-hand side of equations (3.7) and (3.8), can be signi-
ficant and it has no obvious signs of noise, and you can see a certain similarity of
the discussed phenomenon to radiation from a beam modulated at a certain fre-
quency. The description of radiation processes in case of wave packets in repre-
sentation (3.9) is similar to the description of spontaneous and induced radiation in
case of active media (1.7) and in case of particle — wave interactions (2.8).

It is important to note that the system under consideration (see, for
example, equation (3.9)) is close to and slightly above the threshold for the
generation of induced radiation, which is discussed in the next chapter. This
promises, with the correct consideration of the inverse effect of radiation on
turbulence, the emergence of new effects and phenomena. In accordance with
the ideas developed in the reviews by V. L. Ginzburg [1-3] — [1-5], when
discussing the nature of spontaneous emission in the description of classical
systems, quantum effects were not involved above, which nevertheless did not
affect [3- 3] the generality of consideration.
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SECTION 4.
SEMI-CLASSICAL MODEL

In the framework of the semiclassical model (see annex V), let us show
that the nature of the process of excitation of electromagnetic waves in
a resonator or in a waveguide filled with a medium representing a two-level
system of dipoles depends on the relation of the Rabi frequency and the line
width of the wave packet. If there is a significant population inversion or strong
fields, the line width can be neglected.

In this case, the field energy density is high. In this mode, we can observe
noticeable nutations of population inversions with different frequencies along
the waveguide length corresponding to local Rabi frequencies, the interference
of which determines the oscillatory behavior of the wave field amplitude.
At low levels of electric field intensity or small values of population inversion,
the behavior of a two-level system is described by balanced equations;
it becomes monotonic, population inversion tends to zero, and the characteristic
time of a field change increases.

In his famous work [4-1] R. Dicke considered the interaction of oscillators
or emitters that are close to each other; he believed that they are actually combined
into one quasiparticle, which contains several oscillators or emitters. Let us draw
attention to the fact that in the quantum case we do not mean the phase
synchronization of the oscillators, as in the classical analysis; it is about increasing
the probability of radiation, which in fact leads to the same result.

In this case, their wave functions overlap and the probability of spontaneous
emission of this quasiparticle increases in comparison with the probability of
emission of individual oscillators or emitters® [4-2]. However, if the oscillators
or emitters are located in space, the overlap of their wave functions becomes either
weak or generally imperceptible. In most existing lasers, the density of active

? The radiation from a bunch of particles, whose dimension is noticeably smaller than the
wavelength, is coherent in the quantum and classical description.
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particles is such that the distances between them are very significant and the
overlapping of wave functions should not obviously be expected’.

How do the electrons of active atoms interact in lasers? Their interaction
is due to electromagnetic radiation fields. In the quantum case, when the phases
of the oscillator and the field are not defined, and only the relative orientation
of the radiating dipole and the electric field is indicated, that is, only the
projections of the dipole moment on the direction of the electric field are
known, the role of the Rabi frequency can become determining. Many authors
note that the Rabi frequency determines the oscillatory nature of the change in
the population inversion of a system of radiating dipoles (nutations), which
have main and excited energy levels and, generally speaking, are proportional
to the probability of induced radiation and absorption of field quanta [4-4, 4-5].

In this case, the medium of the emitters can be considered as quantum
mechanical, and the field is considered in the classical representation. The
system of one-dimensional equations of the semiclassical theory (see annex V)
for the amplitudes of perturbations of the electric field £ , and polarization P ,
which describe the excitation of electromagnetic waves in a two-level active
medium, can be represented in the following form:

2 2 2
6?+56E_62612?:_47T812D (4.1)
ot ot ox ot
2 2

a—Pﬂ/n8—[)+a)2-P:—2a)|d"b| UE (4.2)

o’ ot h ’

to which you need to add the equation for the population inversion slowly
varying over time

ou_ 2 g%, (4.3)

ot ho ot
where the transition frequency ¢pbetween the levels corresponds to the field
frequency, we shall neglect the relaxation of the inversion due to external
reasons, § is the decrement of field absorption in the medium, d ,, is the
matrix element of the dipole moment (more precisely, its projection onto the
direction of the electric field), the population difference per unit volume is
u=n-(p,—p,), P, and p, are the relative population levels in the absence

of a field, ), is the width of the spectral line, and 7 is the density of the

3 At low temperatures in semiconductors there are few free electrons and there is no overlap
of their wave functions. In this case, their distribution is actually Maxwellian [4-3] and their
temperature is approximately equal to the temperature of the atomic system, which corresponds
to the classical description. It should be mentioned that the Fermi distribution, that is, the
quantum representation, is possible only if the wave functions of the electrons overlap, which
can be observed in metals, where the number of free electrons is comparable to the number
of atoms.
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dipoles of the active medium. Here, the line width is inversely proportional
to the lifetime of states, which is due to relaxation processes.
Shortened equations. Let the fields be represented as

E=[E(t)-exp{—iwt}+ E *(t)-exp{iot}] (4.4)
P =[P(t)-exp{—iwt} + P*(t)-expliot}] (4.5)
Then, the number of field quanta is equal to
<E>>/Arhw=2|E| l4Arho =N . (4.6)
Also, for slowly varying amplitudes, the equations are as it follows
OFE (¢
8( ) +0-E(t)=2irwP(t) 4.7)
t
oP (1) | do
+ P 1) = & E 48
Py 71, P (1) i H (4.8)
ou 2i
——=—[E@OP*)-E*()P(1)]. (4.9)
ot h
From equations (4.7) and (4.9) follows the law of conservation of energy
ON Lasn + 2K g (4.10)
ot 20t

Balance equations. 1f the conditions are fulfilled 7,, >> 0P/ Pot (as it will
be clear from further consideration), the oscillatory nature (nutations) of the
population inversions can be neglected and the system of equations (4.7) — (4.10)
can be written in a form similar to that obtained in [4-6]. This is a simplified
version of the balanced (speed) equations of a two-level system in the presence of
an electric field without taking into account spontaneous radiation

ou  8mwl|d, [

= N, 4.11
o o H (4.11)
4 d.
a_N+25N:M#N’ (4'12)
ot hy,,

where Q, = 4\/7za) |d,, |° N/his the Rabi frequency corresponding to the
density of the number of field quanta N, and 7, is the characteristic process

time, determined from the relation 7, =Q7 /7,,.

Let us note that the transition to equations (4.11) and (4.12) is similar
to the transition to the case of a noticeable spectral field width, when the width
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of the spectral line is greater than the inverse characteristic time of the change
in the amplitude of perturbations [4-7, 4-8].
We shall use the notation u/u, =M, and immediately note that the

changes in the population inversion will be determined by the choice x, and

the initial conditions Q, =d,, || E, |/h=d, |{4nw-u,/%]"*, which represents
the Rabi frequency corresponding to the value of the electric field amplitude
|E, |=[47howp,]"? | E=E@)/[4rhou,]"?, P=4z0P@{)/Q[47hou,]"”
t=Qit T,=0,/Q 606=55/Q,,

Excitation of a resonator with an active medium. In order to solve the
problem of field interaction in a limited system (resonator or waveguide), one
should use the local character of population inversion and, correspondingly,
polarization, determining these quantities in separate spatial sectors. The
electromagnetic field in this case can be represented in the waveguide in the
form of a standing wave, which is due to the effects of reflection of the field
from the boundaries of the system. In the case of radiation from a waveguide
when o6 #0, one should choose the field dependence in each of the spatial
sectors 1< j<S in the form of a relative number of quanta

9

|E;(z=0) |2=2%-|E(r:0) I’ -SinZ{Zﬁé+a} (4.13)
where ¢ 1s the almost constant phase associated with o . Obviously,
1. / .. :
Z 2 ESm2 {27 §+ o} = m 1s in the case considered below, when a countable
j

number ” of waves fit along the length of the waveguide or resonator

b = m A . The total (relative) number of field quanta can be written as
S
N(r)=) <E (r)>’ (4.14)
j=1

JEl>
4
is the waveguide length. It is easy to see that <E>” (x=0)=2<E* >’ Sin’ «

Generally speaking, §~ 4i <E>*(x=0)/( b), where b = m A
T

and O ~2c¢(Sin’ @)/b, where ¢ is the group velocity of the wave outside the
waveguide.

The system of equations (4.7) — (4.10) in this case is transformed as it
follows. For local variables E ., P ; and M ; such equations are valid

P,
L+T,P, =—iM E,

— . (4.15)
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M, :i[E.P.*—E.*P.] (4.16)
or A J J4,

where Ej(r):(\/%)-\E(T)|.Sin{27ré+a} , %ZS:(M]. +M %) =M

For the number of field quanta, we shall write the equation (conservation
law, consequence of equations (4.7) and (4.9))

oM +8N (7)
20t
It should be mnoted that the case y,>Q=d,|E®{)|/h or

+20N(r)=0. 4.17)

¥, >>[4mw]” |d, | 1/ 7" corresponds to low levels of electric field intensity or

small values of population inversion. On the contrary, under strong reverse
inequalities, the line width can be neglected, and in this case the radiation
intensities and population inversions are very significant. These remarks can be
illustrated if we consider field excitation in a cavity without absorption.
Let us examine the solutions of system (4.15), (4.16), (4.17), using the
following notations
N(z')zéz N, (7)), M(T)zéZ]\/[j(T)’Ej(T): 2N(r)-Sin(27r§]_ (4.18)
Under the conditions N (0) = 0.001, M (0)=1,S=100, T';, =0, ® =0,
the calculation results are identical [4-9, 4-10] under conditions I';, =0 at the
corresponding scales indicated above (see Fig. 4.1 and Fig. 4.2). An increase
of the line width from the system I';, >0 in the absence of energy output

results in smoothing out of the field oscillations and the average population
inversion in the waveguide volume (see Fig. 4.1 and Fig. 4.2.)

N M

0" 0.5
0 5 10 15 T
Fig. 4.1. Behavior of field intensity Fig. 4.2. The behavior of the average
versus time for values 1 - I'l2 = 0, population inversion versus time
2-T'12=0.1;3-I'12=10.5; forvalues 1 -T';;=0;2-1,=0.1;
4-I'12= 09; 5-1'12=19 3-F12 = 0.5,'4-F122 :0.9,'5-F]2 =19

in the absence of energy output (® =0)  in the absence of energy output (@ =0)
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In all these cases, the inversion changes over time in an oscillatory
manner or monotonically (with a large line width) tends to zero. The
distribution of M along the waveguide length (by sectors j) at the moments
of the onset of the first maximum A, the first minimum in the absence of energy
output has the form (see Fig. 4.3 — Fig. 4.5).
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Fig. 4.3. The distribution of M by sectors
at the moments of the occurrence of the first maximum
and the first minimum N with different line widths
I';; = 0.1 and in the absence of energy output (® =0)

Fig. 4.4. The distribution of M by sectors
at the moments of the occurrence of the first maximum
and the first minimum N with a line width I';; = 0.5
and in the absence of energy output (® =0)

Fig. 4.5. The distribution of M by sectors
at the moments of the occurrence of the first maximum
and the first minimum N with a line width I';; = 0.9
and in the absence of energy output (0 =0)
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CHAPTER 2. Spontaneous vs induced radiation

It is shown that near the detected new threshold of induced
radiation, competition between spontaneous and stimulated
processes leads to the occurrence of pulses of induced radiation, the
intensity of which can be comparable or greater than the intensity
of spontaneous radiation of the system. In this case, the population
inversion can be many orders of magnitude less than the total
number of states. It is shown that there are the conditions when
regimes of periodic changes in the luminosity of such sources with
different periods and amplitudes are possible. An external low-
frequency wave in the system under the conditions of competition
between spontaneous and forced radiation processes is considered,
which leads to the development of the so-called turbulent-wave
instability.

There are physical processes when spontaneous emission should not be
neglected. This is due to the fact that spontaneous processes are able to reduce
the inversion and they are absorbers with respect to the generation of induced
radiation.

SECTION 5.
NEW THRESHOLD OF INDUCED RADIATION

If, based on the results of studies of the correlation of fluctuations in laser
radiation [5-1], we assume that the fraction of the coherent component is large in
the induced radiation, then we can detect the threshold for the appearance of such
radiation due to the existence of spontaneous processes at a certain critical value
of population inversion [5-2]. A specific feature of this threshold of induced
radiation is that in the absence of field energy absorption mechanisms,
it corresponds to the initial population inversion equal to the square root of the
total number of states”.

On the other hand, taking into account the values of the initial inversion
in the vicinity of this threshold, it is not difficult to see a change in the nature
of the process. When this threshold is exceeded, the number of emitted quanta
begins to grow exponentially over time. Moreover, such exponential growth is
not observed below the threshold. That 1s, the excess of the detected threshold
by the initial inversion leads to an exponential increase in the number of quanta.
At a qualitative level it can be assumed that the terms on the right-hand sides
of equations (1.1) — (1.3) are proportional IV, to the induced processes, as well

* The intensity of spontaneous emission, not synchronized (randomly distributed) over the phases of
the oscillators, is known to be proportional to their number. The intensity of coherent stimulated
emission is proportional to the square of the number of oscillators.
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as the number of quanta written there. It is rational to imagine N, =N ™" 4 N
where N, <" and N (“°" are, respectively, the number of quanta of sponta-

neous and induced radiation. Then a qualitative (i.e. simplified) description
model can be written in the form [5-2]

on, / Ot =+w,, 'Nk(COh) = (g Wy + Wy 'Nk(COh))'nz , (5.1)
om | 0t =—wy, - NP - +(g-wy +wy - N)omy (5.2)
aNk(incoh) 1Ot = Uy, 1y, (5.3)

BN, | ot = wy, - Ny =y, - N -y, (54)

That is, generally speaking, we shall consider two models of description -
traditional and qualitative - modified’

Traditional system of equations
oM, /6T =-N, —2M, -N,
ON,/0T =(N,/2)+M,-N,-6-N,
Qualitative system of equations with the separation

of quanta by their origin

OM /8T =—N,~2M-N,
ON. /8T =(N,/2)-6N,_; (5.6)

mc mc 9

ON_ /0T =M-N,—0-N_,

(5.5)

where N, = N, [y, N.=N“"/ uy, M=p/ g, M=M= p/ p,
T=w, -tyt=4-7,N, = N,/ u,,the only free parameter that is convenient
for analysis is N,=g-N/g. For the comparison to be correct,
let us assume that the total number of real states is N =n, +n, =10"
and a threshold inversion g, =vN =10°. Let us evaluate the transition to
a single time scale cording to the relation 7 =r7-y,, where T is the time
in each individual case. The initial values are defined as it follows
M(T=0)=M(T=0)=1,N,.(T=0)=N,,/ 14, =3-10*/ 1,
N, (T=0)=N,/ 1, =3-10*/ g1y, N((T=0)=N, / 14, =3-10*/ g4, as well.

The absorption of field energy will be taken into account by the value
0 =20,/ w, u,. The change in the nature of the process for the traditional

system (5.5) is shown in Fig. 5.1, which reflects the dynamics of the
development of the process for cases of parameter change N, < (30+0.01) .

> Already A. Poincare noted that "mainly equations should teach us what can and should be changed
in them."
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Fig. 5.1. The behavior
of the quantity In{dN,/ N,dT}
1 versus time for the parameter
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The traditional idea of the instability threshold meets the requirement
of positivity of the right-hand side of the third equation of system (5.6)
M > 6 or, what is the same

M > Uy =0p | Wy (5.7)

We should also (see Fig. 5.1) pay attention to changes in the number of
quanta upon crossing the threshold [5-2]

ny =1 = Uy, = (2N)"? =[2(n, +n)]" (5.8)

Indeed, when the threshold (5.8) is exceeded, it can be seen that the

magnitude In(dN / NdT') (ordinate axis of Fig. 5.1) becomes more and more

gentle, that is, the number of quanta grows, and this growth acquires a clear
exponential character with distance from the threshold (5.8). Let us discuss
the conditions under which it makes sense near the threshold of induced
radiation (5.8) to use a qualitative system of equations (5.6).
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In the framework of the classical description, the intensities of spontaneous
emission of particle-oscillators whose phases are randomly distributed and added
up, because the intensity of spontaneous emission is equal to the sum of the
intensities of the radiation of individual particle-oscillators in an excited state or at
a higher energy level. In the case of induced, actually coherent radiation, the field
strength is so significant that it synchronizes both emitting and absorbing particle
oscillators, therefore it depends on the sign of population inversion x4 =n, —n,

whether this induced field will increase or decrease, and the characteristic time
of this process is inversely proportional to 4 .

However, if there is no such induced coherent field, then the oscillator
particles in the excited state will be emitted spontaneously, because they are not
synchronized.

In the traditional model (5.5), there is a term - N, that is responsible for the

induced processes of excitation and absorption. But this term does not have phy-
sical meaning below the threshold (5.8), because in this case there is no an intense
induced field that can synchronize the radiation of many particles in the system.

In a stationary state, the radiation intensity of the source will be determined
only by spontaneous radiation o -M(iMh) ocg-N/2, which leads to a decrease

in inversion.

However, when the threshold (5.8) is exceeded, the term x4 - N, in the
right-hand sides of the equations plays an important role, providing a descrip-
tion of the induced processes at 4 > Ly, . Near the threshold (5.8) it is rational
to use precisely a qualitative system of equations, then the intensity of sponta-
neous emission in a unit volume is determined by &-N,"”" =g-N/2, but the

energy flux density of the induced radiation is - N,

Figure 5.2 shows the dynamics of the radiation process both in the case of
a description by means of the traditional model and in the case of a qualitative
description near the threshold (5.8). At large values of the initial inversion;
induced radiation appears. In this case, the regime of exponential growth in
anumber of quanta is more and more clearly distinguished. In the absence
of absorption of quantum energy, according to the qualitative description (5.6),
after a decrease in the pulse amplitude of the induced radiation, the number of
spontaneous emission quanta continues to increase. In the traditional model (5.5),
absorption processes limit the growth of the total number of quanta and the
radiation level reaches its stationary value.

However, comparing the dynamics of the processes, it can be understood
that after decreasing the amplitude of the pulse of the induced radiation, the
main contribution to the total number of quanta is made only by spontaneous
emission. That is, at times greater than the pulse duration of the induced radiation,
spontaneous incoherent radiation dominates.
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It should be noted that in case of a fixed final level of loss or absorption of
quantum energy, the pulse size of the induced radiation remains almost unchanged
even with a significant increase in the level of population inversion (Fig. 5.3b).
Thus, if the formation of the leading edge of the induced radiation pulse is
determined by the initial level of inversion, then largely the duration of its trailing
edge is determined by the levels of quantum energy loss in the system [5-3].

_a o T0 T
0o 12.5 25 T

Fig. 5.3a. Form of the coherent pulse in  Fig. 5.3b. Form of the coherent pulse
the absence of absorption (6=0) in an absorbing medium (28 = 4-10°)

Jor inversion value s u,, =2-10° ; for inversion values [, =2-10° ;
2-10°:410-10°; /20-10°; 2.10°;4/10-10°; +/20-10°;

J50-10°:107 - 2-107:2:10'; 1010 J50-106 107 2-107:2:10' 10-107.

The threshold of induced radiation discussed in this work corresponds to
the case when spontaneous emission randomly distributed over phases is
comparable to induced radiation. Exceeding a threshold that is extremely low

(for example, at N =n, +n, =10, threshold inversion n, —n, = t4,, =</N =10°,
and relative inversion (n,—n,)/(n,+n)=~10"°)) leads to the occurrence of

pulses of induced radiation, which is largely coherent. Moreover, the intensity
of the pulses is comparable to the intensity of spontaneous emission.

These are the results of the analysis that let us expect that this mechanism
could be one of the reasons for the formation of coherent pulses of appro-
ximately the same duration under cosmic conditions in the atmospheres of stars.
Let us discuss the possibility of such processes below.
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SECTION 6.
PERIODIC CHANGES IN THE LUMINOSITY
OF QUANTUM SOURCES

Let us consider the radiation source and select in it the layer, where the

medium, capable of generating periodic radiation pulses, is located. For
example, such a layer in stars can be localized in the region of the photosphere.
In some cases, there may be several layers. It is possible to simulate the active
zone of this layer by a two-level quantum system, and the populations of these
two levels will be considered approximately equal. With very insignificant
excess of the upper level population (the population inversion is positive in this
case), in addition to spontaneous emission, the generation of induced radiation
is possible, the threshold of which was found in [6-1, 6-2]. Given a sufficient
thickness of the overlying layers due to the effects of scattering radiation
emanating from the active zone of the two-level system in them, the emission
spectrum of a completely black body can be formed [6-3].
In addition, let us assume the existence of strong convective flows from layers
closer to the hot region of the source, which are capable of introducing a certain
fraction of excited atoms of this active substance into the active zone. That is,
such convective flows are able to increase the inversion in the active zone. One
can be convinced that the intensity of the induced radiation of a given spectral
line, described by a two-level system, can significantly exceed not only the
spontaneous intensity of atoms of a given substance, but also the spontaneous
emission of the entire spherical source as a whole.

Let us discuss the possibility of generating periodic pulses of induced
radiation in a heated gas with a fraction of active particles in two states (two-
level system). It is important that in some active zone of the radiation source,
the number of active particles at two energy levels is approximately equal,
and the population inversion is much less than the total number of particles.

Under these conditions, the intensity of the induced radiation is comparable to
the intensity of spontaneous emission. It is assumed that in the active zone, which
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1s transparent to radiation at the frequency of the energy transition, active particles
with the excited state from the underlying dense layers enter due to convection.
That 1s, in the medium there is a source of inverted (excited) active particles.

Let us consider the conditions for the approximate equality of the number
of states at two working levels [6-4, 6-5], that is, if the threshold is exceeded
(5.8). In addition, we assume that the system is close to the threshold (5.7).
Equations (5.1) and (5.2) can be written in the follow&ng form

on,/0t=-g-n,—u-N, +—n, 6.1)
21
1%
On /0T =+g-my+ - N, ——n, (6.2)
w21
or otherwise
ou/ O =[(v—uy )/ wy ]-m —2p1- N, (6.3)

where V is the effective frequency of collisions with fast electrons of the medium,
which provides a transition from the lower energy level of the quantum system to
the upper energy level. In this case, v ~u,, , T/t =X /x=w,,- 14, and we can

introduce the value [(V —uy,) / wy, 1n, = g5 1,
The equations of system (5.6) can be represented in the form

OM /0T =1,-2M-N_ (6.4)
aNinc/87—':]\70/2_9'Ninca (65)
ON_ /8T =M-N_—-6-N_ | (6.6)

Let wus also assume that the thresholds (5.7) and (5.8)
Hrpy = My =20/ w,, are close to each other. In this case, damped relaxation

oscillations will bring the system to the stationary state N_,~=-1+1,/26 and

M_,=60- The radiation flux density in this case reaches the wvalue
0N, +0-N,,.,=,—20)/2+N,/2=2N, /2.

cst incst

However, in the presence of an external source of inversion which is propor-

tional to K | its value will be greater than the stationary value. When the equilib-
rium conditions for the processes of collisional excitation by free electrons of the
main gas of active atoms and their radiative relaxation are satisfied (/, =0), then

OM/OT =K-M-2M-N_+1, (6.7)

One of the possible mechanisms for supporting inversion in a system may

be its transfer from other internal layers of the radiation source

—V-@M/@XzV%zKM>O, (6.8)

where -V -VM=V -M-L"' =V -M/(l-w,,-4,) 1s responsible for convective
transfer of inversion from the denser underlying source layers. Equations (6.5) —
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(6.7) are similar to Statz-DeMars equations [6-6], which describe relaxation
oscillations with the establishment of a stationary state with a negative first
term on the right-hand side of (6.7).

It is the inversion flux into the region of the active medium that can lead to a
change in the nature of oscillations: from relaxation to periodic oscillations. In this
case, the occurence of periodic pulses of induced radiation in the selected norma-
lization against the background of the average radiation flux can be observed

O-N_,+0-N _=T60+N,)/2, (6.9)

When [, >0 the collisional excitation is large, the induced radiation is

incst

monotonic in nature; however, in the case ]0 <0 there is no induced emission.

That is, the generation of periodic pulses reveals itself only under conditions
of equilibrium of the processes of collisional excitation by free electrons of
the main gas of active atoms and their radiative relaxation, mainly due to

spontaneous emission [, =0. In this case, if there is a pulse, the integrated

radiation intensity can increase several times.
It should be noted that the authors of [6—4, 6—5] observed the pheno-

menon only under the condition of equilibrium /,=0 and also in the case

of proximity of the generation thresholds (5.7) and (5.8) (see annex VI).
Note that the system of equations (6.6) and (6.7) for large values of the

line width 71, and conditions K=/,=0 can be obtained from the system
of equations (4.7) — (4.10) of the semiclassical model (see Section 4), and the
relation w,, = Q? / u, -7,, is valid, whence it follows T = Q¢ / y,, .

You can make of one-parameter system of equations [6-6]:

oM
672 =K,-M,-2M,-N, (6.10)
ON
82’2 :Mz'N2_2N2 , (6.11)
pQy _<E'>Q/

where =01 M, =

T u - ’ = . . 1/2
Hy 5'7/12, > Azho o7, Q, =ld,, | [4rnw- p, | 1] ,

712 —is the spectral line width, K, =K -w,, -4,/ =2K-(Q; / 6y,,) =2K /6.
These equations describe the generation of induced radiation with a number
of quanta per unit volume V, =N, which is periodic pulses with some constant
component. In addition, there is a spontaneous incoherent component of the same
source, the relative number of quanta of which is equal to N, =N""/y

described, for example, by equation (5.5). A significant part of the radiation
of a quantum source is induced radiation, which is almost monochromatic.
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However, if the quantum source is surrounded by a sufficiently extended
atmosphere, as it is noted in [5-3] due to multiple scattering the radiation
characteristics will approach the radiation characteristics of an absolute black
body. The total relative number of radiation quanta per unit volume is equal to

N=N,, +N,, and in spontaneous emission not only the radiation of a quantum

source, but all types of radiation of a similar nature should be taken into account.
It is important to note that despite the extremely small population inversion, the
intensity of the induced radiation may greatly exceed the spontaneous intensity.

System (6.10) — (6.11) has a singular point (2,K, /2) and a stationary
solution M, =2, N, =K, /2 In case of small deviations M ,, N, from the
singular point, the system can be linearized and then the equation for the phase
trajectory is: K,(M, —2)* +8(N, — K, /2)> = Const . The phase trajectory turns
out to be a closed line, which indicates the presence of stable periodic solutions.

Figures 6.1-6.3 show M ,, N, time dependences and phase trajectories

for different cases of removal from the critical point at K, = 20
The initial values for M, were set constant M, (0)=2 . the choice of the cur-

ve was controlled by removing the initial value N,(0) from its critical value of 10.

]\72 Mz | I |

15 101

10—

0 1 T, 0

Fig. 6.1. a). The behavior of the relative magnitude of the density of quanta N,
as a function of time b) The behavior of the relative density of the inversion
of populations m,as a function of time ¢, atl1- N,(0)=4,2- N,(0)=6,
3-N,(0)=8,4-N,(0)=9,5- N,(0)=9.6

Fig. 6.2. Phase diagrams (M,,N,)

for the system of equations (6.10) — (6.11),
when choosing the initial conditions
in the form for1- N,(0) =4,
2-N,(0)=6,3- N,(0)=8,
N, 4- N,(0)=9,5- N,(0)=9.6

10~
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For purposes of clarity, Table 6.1. presents the minimum number of
quanta N, (constant component in the induced radiation), the maximum
number of quanta N, __, the average value of the number of quanta N,
amplitude of oscillations N, _ —N, .,
It should be noted that the average value of the relative number of quanta N
depends only on the choice of the position of the center of the diagram —

its critical value K, /2

and the period of oscillations 7, .

Table 6.1
Calculation | N,,... | N, Now | Nomx = Nomin T,
1 4 20,188 10 16,188 1,289
2 6 15,474 10 9,474 1,0964
3 8 12,308 10 4,308 1,0147
4 9 11,071 10 2,071 0,9984
5 9,635 | 10,374 10 0,739 0,9941

The graph of the change in the number of quanta /N, has the form of

a sinusoid for phase trajectories near the critical point (calculation 4 and 5). For
phase trajectories far from the critical point (calculations 1 and 2), the change

graph N, takes the form of a saw: a sharp increase and a slow decrease.

A similar behavior is characteristic of the luminosity of Cepheid stars, where
thermonuclear fusion has reached its limit element, i.e. iron: significant sawtooth
oscillations of the luminosity of stars, Cepheus deltas and small sinusoidal
oscillations of the North Star.

The solutions (6.10) — (6.11) can be given in variables adopted in
astrophysics, for example, the relation between the apparent magnitude m

and luminosity L (using the known distance to the star in parsec d );
m=M, +51g(d/10)-2.51g(L) is the ratio between the absolute magnitude

Isun

M, (visible magnitude from a distance of 10 parsecs) and the visible magni-
tude m,ie. M, =m—51g(d /10).

The solutions of equations (6.10) — (6.11) are presented in Fig. 6.3 and
6.4. Here the change in the magnitude of the star of the Cepheus delta [6-8] and
the Polar star [6-9] is depicted (for details see annex VI). The ordinate shows

the values of the apparent magnitude; the abscissa shows time in fractions
of the period of change in the brightness of the star.
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Figure 6.3. Change in the
stellar magnitude of the star

m of the Cepheus delta with time.

36l // . RN (solid curve — obtained in the

- { 1930s by N.F. Florey using
N a visual photometer) see,

o for example, [6-10] and the

41 L J 4 solution of the equations

44 _ [T N NS S N S N ofsystem (610)—(611) in the

Phase 00 01 02 03 04 05 06 07 08 09 10 ¢

same variables, when selecting
the level of spontaneous
emission and scale (dotted line)

Fig. 6.4. The time change’

Ly | in the magnitude of the North
e ’; 4 **iﬁh Star (solid curve) and the
e ﬂ:+ | ' N solution of the equations
T

in the same variables when
choosing the level of
spontaneous emission
and scales (dotted line).

ez Tyt '.‘ of the system (6.10), (6.11)
2.14 E t + \
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SECTION 7.
TURBULENT-WAVE INSTABILITY

Turbulent-wave instability is the interaction of a slow (in comparison
with the characteristic time of turbulent pulsations) wave of finite amplitude
v = Aexp [i (K X — Qt )] with a turbulent medium, the pulsations of which are
maintained by a constantly acting source in the absence of a wave near the
threshold for the development of instability (i.e., the process of growth of
turbulent energy). In order to describe such a phenomenon in various physical
realizations, there is a universal system of equations presented in [7-1, 7-2].

Studies of the turbulent-wave interaction in a stratified fluid with a shear
flow located near the stability boundary (that is, at Ri, > Ri_, where

cr?
Ri,. =N?/U* is the critical Richardson number close to 1/4, N =g po' ph(2)
is the Brunt-Viisild frequency (buoyancy frequency), U = (U, (z),0,0) is the
rate of fluid flow) in the presence of an internal wave were undertaken
in a number of works [7-3, 7-4].

As shown in these works, an internal wave can change the values of the
velocity shift and lead to the development of small-scale turbulence, which, due
to positive feedback with the internal wave, leads to the so-called turbulent-wave
instability. A particular problem in describing the interaction of an external wave
and its initiated turbulence is the calculation of the coefficients of this interaction.

One of the main methods for describing turbulence is the method of
statistical moments, based on the representation of hydrodynamic quantities
as a sum of averaged and random components.

After substituting these quantities into hydrodynamic equations and then
averaging over the ensemble of realizations, an infinite system of equations for
statistical moments is obtained, where the main task is to close this system.



~44 ~ Selected chapters (theoretical physics)

For developed turbulence, closure schemes are usually used, according
to which turbulent flows (second-order statistical moments) are assumed to
be proportional to the gradients of the corresponding averaged quantities
(for example, velocity U;), in particular, the turbulent momentum flow in
uniform isotropic turbulence is assumed to be

an J

2
+
(9:5]. O,

~26,E, (7.1)

—(uu,) =,

where E is the energy of turbulence and U ; is the speed of turbulent pulsations,

V 1 is the coefficient of turbulent viscosity, for the determination of which
additional physical considerations are required.
Earlier, A. N. Kolmogorov suggested that molecular transfer is negligible

compared with turbulent one; he determined the form vy ~L+E , where the

scale of turbulence L in the general case is a flow functional (turbulence energy),
that is, vy depends only on the kinetic energy E and the characteristic scale of

turbulence L. For turbulence, near the threshold of instability, these assumptions
(or at least the second one) may not be valid. A system of equations relating
the amplitude of the internal wave and the energy of turbulence was obtained
in [7-3, 7-4], where the coupling coefficients were calculated on the basis of the
Kolmogorov hypothesis, which led to the solutions that are not physically
interpreted in all areas of variation of the studied variables. Therefore, it made
sense to formulate another hypothesis (see [7-2]), on the basis of which turbulent
flows can be found: near the instability threshold, between the pulsations of
individual quantities (density, pressure, velocity, etc.) the ratio are kept the same
as at the initial stage of the process, which generates and enhances turbulence.
That is, the correlations between the values are imposed by processes that
have generated turbulence and intensify it. Let us note that such an approach
is constructive for other problems, in particular, for a more correct description
of transport in plasma-like media and it was used in a number of works. The
application of the proposed closure model when allocating zero and first
harmonics of its space-time distribution in the energy density of turbulence E
isasit follows E =W, + W exp[i(Kyx —Qt)]; let us obtain the following

system of nonlinear equations (see annex VII):

W,
50 =—gWy + aIm(AW*) - ARe(AW*) +q
T
Gan = -, W, + i0AW o + AW | (7.2)
T
OAl Oc=—pW;,

where A, QQ , K are the amplitude, frequency, and wave number of the internal
wave, W, is the variable component (having a spatio-temporal dependence
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proportional to exp{i(Kx —Qt)}), and W, 1s the average value of the energy
of small-scale pulsations, &, oc (Ri; —Ri,,.) is the value which characterizes

the deviation from the turbulence growth threshold and é determines the effect
on System of external fluctuations, L A p are the parameters that determine

the relation between the shear flow and the amplitude of the internal wave.

One can find a similar mechanism for the interaction of a wave with
turbulence in the case of nonisothermal plasma in the presence of a low-density
electron beam. Let the system be near the threshold of instability, which could lead
to an increase in Langmuir oscillations. Nevertheless, the level of turbulent pulsa-
tions, in the absence of a wave near the instability threshold, is quite significant.

A mechanism that can lead to the development of such instability and
enhance Langmuir turbulence can be an ion-sound wave of finite amplitude,
with the frequency and wave number of the ion-sound wave being much less
than the corresponding values of the Legmuir oscillations.

It turns out (see [7-1]) that in this case as well, the system of equations
describing the interaction of the ion-sound wave and the energy density of the
wave turbulence energy can be written in the same form on the corresponding
space and time scales (7.2). Thus, we can assume that the system of equations
(7.2) 1s universal, at least for the describtion of the interaction of the wave and
turbulence in a medium near the stability threshold (see annex VII).

The analysis of the equations showed that there is a range of parameter
values o , and B when there is a nonexponential simultaneous increase of the

wave amplitude and turbulence energy caused by their nonlinear interaction due
to a constantly acting source of turbulent pulsation energy. The mutual
amplification of the wave and turbulence takes place at finite times of the order

of T pmpl Nl()‘g_ ] "' As a result of the development of instability, the wave provo-

kes the appearance of spatially distinguished structures — regions of growth
of turbulent pulsations. The initial value is W (r=0)=¢q/¢,.

;
6 10 ,(0)
> 4@ !
4 ()
g | W (f)| 4
1 W) ¢

t

2 4 & 8 10

Fig. 7.1. The results of the solution of the system of equations (7.2)
for the case €y =q =1,a) a=5 A=01, u=1;p) a=5, A=0.1, u=01
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On the other hand, the presence of a turbulent medium near the instability
threshold leads to an increase in the wave amplitude, which will make it
possible to use this phenomenon to diagnose critical zones where catastrophic
processes are very likely. Since the conclusion of turbulent-wave instability
presented in annex VII is based on the equations of classical physics, it can
be expected that the application of this approach [7-2] will allow describing
a lot of phenomena.’

It is important to note that the development of the instability process occurs
mainly due to the energy stored in turbulent pulsations, which is anomalously
high near the instability threshold (similar to how it occurs during critical
opalescence). Turbulence, in its turn, is directly related to temperature. The
excitation of instability, which is already a macroscopic and large-scale perturba-
tion, and the maintenance of this perturbation due to the energy of a microscopic
turbulent state (which is perceived as a heated region with a large level of
fluctuations), can sometimes be presented as a direct transfer of fluctuation
(or thermal) energy to macroscopic movement.
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CHAPTER 3. Spatial and temporary
dynamics of some types of instability

The spatiotemporal dynamics of the development of certain
types of interaction of waves and disturbances is considered,; howe-
ver, their nonlinearity was neglected. It is important to note that the
nonlinearity of waves usually does not affect the nature of the spatio-
temporal dynamics, which allows us to restrict ourselves to linear
equations for waves, taking into account only their connection. It is
shown that the transition to a moving reference frame of reference
makes it easier to describe the processes of generation and amplifica-
tion of oscillations, and also simplifies the determination of the
conditions for the development of convective and absolute instability.

SECTION 8.
SPATIAL AND TEMPORARY DYNAMICS
OF THREE-WAVE INSTABILITY

Let us discuss the development in space and time of the decay instability,
which was investigated in Section 3. Generally speaking, in the one-dimensional
case, the interaction of three waves satisfies the conditions @, = @, + @, and

k, =k, +k,, and the development of the process can be understood by considering
the energy conservation law AE, ~AE, +AE,, where there is the change in the
energy of the ith wave AE,. Imagining AE, =7 ®, - AN, where AN is the change
in the number of quanta of the i-th wave, we again come’ to the ratio
w, ~ @, + @, , and this necessarily leads to AN, =AN, =AN,.

In the absence of energy absorption, wave decay @, is periodically
replaced by wave synthesis o, + @,, however, when energy absorption in the
system 1is taken into account, such a frequency of energy exchange is violated.

Below we are going to consider the decay process of a high-frequency wave
of large amplitude with a frequency @, and a wave number Fk, under the

conditions of absorption of one of the excited waves.

If waves with a frequency @;and wavenumbers k ; are eigenwaves of
a medium, under certain conditions it is possible to decay the main wave of large
amplitude, which obeys the conditions of spatial synchronism ko =kl +l(2, then
an approximate expression is valid for frequencies @, = @, + @, . Subject to

the condition of temporary synchronism @, =, + @, , the relationk, ~ k, + k,

can also approximately written for wave vectors. In the first case, this refers to
the generation of oscillations (@;,k;), in the second one their amplification

¥ Interactions of this type were first obtained in [8-1].
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is discussed. Indeed, in the first case of spatial synchronism, the detuning
Aa):a)o—a)l—a)z can have an imaginary part, which corresponds to an
increase (or decrease) in the amplitudes of coupled waves oc exp{ImAw-t},

where Im A @ is the (temporal) increment (or decrement) of the instability. That
is, this corresponds to the process of generating two waves. In the second case,
the wave frequencies can be written as k, — k, — k, = Ak, only the amplitude

grows along the coordinates oc exp {Im Ak - x} , where Im Ak is the spatial
increment (or decrement) of the process.

However, this representation is simplified. In fact, these processes should
be considered differently in their spatio-temporal dynamics. Generally speaking,
wave instabilities (w,, k,), are represented as the excitation of a spectrum of

waves that obey only approximate space-time synchronism
ky—k —k,—Ak=0, o,—0,—w,-Aw=0, (8.1)
where (Aw, Ak) ; they respond slowly varying in time and in space envelope.

In other words, it is useful to use equations for the two waves connected
by conditions (8.1)

o4, + v, 04, +0,4, = a, 4,
0A 0A
a—tz"‘ V2 a—xz"‘ 52142 = azAl

where A;;v;;0; are the amplitude, group velocity and decrement of absorption

of that i-th wave respectively, o =;(4,) are the coupling coefficients between the
waves, which in this case are proportional to the amplitude of the main unstable

wave A, .

In order to simplify the calculations, let us assume below that the fast
wave (v, > v, ) practically does not decay (0 <<0,). Such a process was studied

by numerical methods in the works by L. M. Gorbunov in 1972-1977, where
the regime change was clearly shown when taking into account the attenuation
of one of the waves. However, a constructive analytical representation of the
nature of such an instability is possible.

It i1s convenient to carry out further consideration in a moving frame of
reference ¥ with respect to the laboratory frame of reference (& =x—Vt,1),

in this case v, <F'<y. It turns out that in this range of speeds for a certain value

of the velocity of the reference frame ¥ , one can find a regime where the wave
packet — the envelope of oscillations in this reference frame — will not be shifted
as a whole in space. Such an instability is called absolute. Let us note that
if in this reference frame the wave packet moves (drifts) in space — such
an instability in this reference frame is called convective.
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The question of the nature of instability has been actively studied by many
authors, an extensive bibliography of their works is given in books [8-2, 8-3].
The most informative description of the nature of instability is given in the book
[8-4]. Unfortunately, sometimes such descriptions are rather cumbersome,
as the authors look into detail too much. Therefore, it is rational to switch to
a moving coordinate system, the speed of which allows finding the absolute
instability regime, which was done in [8-5].

It is clear that the same instability in one frame of reference can turn out
to be absolute, and in all other systems it will be convective — drift one. For

perturbations form ~ €Xp {-iQt+iKE&} in a moving reference frame, the
dispersion equation can be written as
D(Q,K)=(Q-Kv, +KV)(Q+KV -Kv, +i5,) + o, . (8.3)

To determine the value o, corresponding to the development of absolute
instability, it is necessary to solve the equations together (see annex VIII)

D(Q,K)=0, (8.4)
OD(QK) _
=0, (8.5)

that is, this condition for the development of instability, in which the group
velocity of propagation of the envelope of the oscillations is zero

_ _0D(,K),,.:0D(Q,K), _
V=S5 =0, (8:6)
Solving equations (8.4) and (8.5) together, we shall obtain moxyunm
iJo,a
Qab = ?1‘}2{2[("1 - V)(V - Vz)]l/2 - 0("1 - V)} s (8-7)
17 "2

_Q @2V —v—v)-is,(v V)
) (= S

where 0=6,/(a)*=8,/y, is the ratio of the absorption decrement in the

K (8.8)

absence of instability (y,=0) to the maximum possible increment of nondis-
sipative instability (&, =0).
The parameter @ as it will be seen from what follows, is decisive for the

description of the nature of the so-called dissipative instabilities in media with
a finite level of losses. Obviously, the absolute instability will develop only
at high critical speeds kpurnueckoit V.,

V>V, =0+407v,)/(1+407), (8.9)

The largest time increment as a function of speed is not difficult to
determine from expression (8.7)

(IMQ ;) ax =/, - {(4+602)2 -6} /2, (8.10)
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it is achieved at drift speed

v, +Vv vV, —V
V — 1 2 9 1 2
T 2 + 2(4+92)1/2‘

(8.11)

It is important to note that in such a case ImK , =0. That is, the shape of a
packet moving at a speed V. will not change. For other values of the velocity
of the reference system J, <)<y, growth at a fixed point in the wave

amplitudes will be suppressed by the drift of the wave packet.
In other words, the envelope of the wave packet as a whole does not shift
in space only in the reference frame, which moves with speed V. .

At a lower or greater speed V' of the reference system w<V,<V<y, in

the interval in the region near a fixed point £ , one can also observe an increase

in the amplitude of the packet. However, due to the demolition of this package
as a whole, this growth will not be so significant.

As shown in [8-5], the maximum amplitude of the packet grows in time
with a time increment (8.10) and quickly drifts with speed V; to the boundaries

of the system, after which a much smaller field amplitude is established.
Nevertheless, it can be determined. The spatial increment of the process as
a function of drift velocity will be equal to

ImK#)=ImQ_,(V)/V, (8.12)
and it is achieved as a result of the balance of processes of growth and energy
transfer. The greatest gain corresponds to speed
_ Avw+ 0%v; [

(v, +v,)* + 0%}

v+ v, v, —V,
2 2

In the absence of energy loss (€ = 0) for the optimal drift velocity and the

+6v, (4vv, +0%v)) "] (8.13)

L

largest spatial increment, we shall obtain the known expressions
2vv,
Vi +v,

a\a,
ViV,

v, = ImK = (8.14)

5

If the instability is dissipative, and the absorption level is large enough

12 : : : -
@*—L>>1, then for the optimal drift velocity and the greatest spatial increment
Va

in such a dissipative regime, estimates are

o~ M ImK Y02 (8.15)
1+0- v,0
Thus, over time 7.~ L/V,, the field amplitude increases at the system

boundary by a factor of exp{(ImQ ,),..7;}. Then, over time 7, =L/V, >z,

max
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a stationary state is established with a significantly lower amplitude value
exp{ImQ , |V:VL T}
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SECTION 9.
SPATIAL-TEMPORAL DYNAMICS
OF A BEAM-PLASMA INSTABILITY

The development of kinetic instability. Let us consider the spatiotemporal
dynamics of the processes discussed in previous chapters.
In Section 2, the particles of the electron beam whose mean and thermal

velocities are equal to Vg,V respectively, and the unperturbed density is #, ),

excited Langmuir oscillations in the plasma with frequency is @, and wave
number is k = @, [V, , that is, the electric field of which can be represented

as E(t,x)-exp{—iwt+ikx}. Far from the excitation condition of such a (kinetic)

beam instability (¥, >0, ), which is accomplished when the condition is
Vi [ Vo > (1 /np0)1/37 9.1)

the induced emission of the beam electrons dominates and the equations for
a slowly changing wave field E(z, x) can be represented as (see, for example,
[9-1,9-2])

OE OE

or 2ok Tt ©-2)
where v, =0w/0k ~ 2v%p /vy, 1s the group velocity of Langmuir oscilla-

tions, Vg, =47, ,/mis the thermal velocity of plasma electrons,
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_2r*elw .
Y= Wﬁfb (V) /0V|,_puyi (see Section 2). Let us choose the boundary

and initial conditions in the simplest form E(t=0,x)=E(,x=0)=E, , then the
solution (9.2) will be

E(t.x) = By {1+ O =x/v)lexp(y, S—=7,) - -expiy,f}. - (93)

g
Thus, for ¢>X,/V,, forx<x,, where X, is a fixed point in the instability

zone, the field amplitude E (¢, x) does not change, that is, a stationary state is

established. It is easy to see that in space this amplitude increases from the
boundary of the system according to the law ocexp{y,x/v,}. Therefore, it is

possible to define a quantity };/v,=—Imk>0 as a spatial increment. In the
region X>X,, field growth occurs 7, =Im o > 0 only in time in accordance

with a time increment.

The development of hydrodynamic instability. In case of violation of
condition (9.1), that is, with a slight spread of the beam electrons in velocities,
the regime of hydrodynamic beam instability is accomplished. In this case,
the perturbations in the beam are perturbations of the density and average-
hydrodynamic velocity of the particles.

When waves or perturbations interact in a beam (stream) of charged
particles (in most cases theses are electrons) with waves in a resting plasma,
it should be borne in mind that such two-wave hydrodynamic instability occur for
waves of different signs of energy. Indeed, slow waves in the beam (whose phase
velocity is less than the average flow velocity) are waves of negative energy, that
1s, an increase in their amplitude decreases the total energy of the particle beam
(see, for example, [9-3, 9-4], also look (10.3)). It can be shown [9-2] that unstable
perturbations in the beam will be perturbations of negative energy. The equation
for the envelope of the oscillation field in the system “non-relativistic electron
beam — plasma” in the case of quasihydrodynamic equations describing the effects
of absorption of wave energy in the plasma takes the following form

0 0.y, 0 0 . 3
G v Il Lo - = 4
{(8t+vo 8x) (8t+vg ax+5) iy,1A4; =0, (9.4)

The corresponding dispersion equation for perturbations of the form
~exp{—-i1Q¢r+iK &} in a reference frame that moves with speed V' with

respect to the laboratory reference frame can be represented as
D(Q,K)=(Q-Kv, +K)*(Q+KV -Kv, +i8) -3 =0 (9.5)
where V, and O are the group velocity and damping decrement of the

Langmuir plasma oscillations in the absence of an electron beam,
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2

e/ 2 s the expression determining the increment in the absence

3 _
70_a)bea)

o B 5 B 5 :
of dissipation, @, =.4ze’n,,/m, , ®,, = 4ze’n,, /m, are the Langmuir
plasma and electron beam frequencies, n,, and n,, are the unperturbed plasma
and beam densities, and e, m, are the electron charge and rest mass

In order to determine the value € corresponding to the development
of absolute instability in a moving frame of reference (& =x—V7%,¢), in this

case v, <V<v0, it is necessary to solve equations (9.5) and (9.5) consistently

(see annex IX). Let us rewrite (9.5) in the form

D =(y-z)*(y+az+il)+1=0, (9.6)
where the notation y = %[(VO -V Vv —vg)]”3, z= Zal_m’ a, = ;0__‘2 ,
S- 0!2/3
I'= p L is used. Solving equations D, =0 and dD,/dy=0 together, we find,
0

following [9-2], the corresponding instabilities of the value Z=z, and y=y):

zz:—(1+a)‘1-{iF+2“Z’7(1—i\/§)}, 9.7)

v, =gyt oir—=200=13), 9.8)

25/2

In the absence of absorption (I'=0), the envelope at a fixed point in the
moving reference frame grows incrementally

3
ma =Yy, (@), 9.9)
where f(a)=3a"?/2**(1+a) provided that the greatest value of this function

is f(1/2)=1.

In the laboratory coordinate system, the envelope with the maximum

increment GmQ)W=70@/ 2 moves with speed VT=%v0+vg. In addition,

it is important to note that in this case Imz, =0, that follows from the expres-

sion (9.6). That 1s, in the frame of reference that moves at a speed V. relative

to the laboratory frame, the wave packet as a whole does not shift.

In the absence of energy absorption in the plasma, the amplification of
oscillations 1s most effective for the envelope, the drift velocity of which in the
laboratory reference system is equal to V=V, =(3v,,)/(2v, +v;). The max-

mum spatial increment in this case is
(IMK),y = (S372)7,(58v,) " 9.10)
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When absorption is taken into account, absolute instability is developed
in a moving reference frame whose velocity ¥ is in the range

v, <V, <V<y, (9.11)

where ¥, =(2"20-v,+3"*v,)/(2260+3""). With an increase in the absorption level

0=01y,, the velocity range (9.11) shifts to its upper boundary. That is, in the

regimes of dissipative instability, the oscillation envelope moves with a speed
slightly lower than the velocity of the beam particles. The maxima of the temporal
increment (Im€), . and spatial increment (ImK),,,, are determined respecti-

vely using the equations

2°B 0 on ) Ve 25/39 25 _1=-0

The maximum achievable amplification of the oscillations along the
length L neglecting the effects of reflection of the order exp{(ImK),,,, L}, and

the time of the transition process until the stationary distribution of the field
amplitude in the system is established L/V;.

g, 90
(Tmad ., ]
0,54 !
7,2 5
0 N 1,01 :
0,5 1,0 VY, ‘
|
i | 0,5 i
[ & 7 3 &

Fig. 9.1. Time increment as a function of drift velocity (right).
The dependence of the spatial increment of amplification of oscillations
as a function of absorption level (left) [9-2]
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CHAPTER 4. Dissipative instability

The nature of the development of dissipative instabilities
of charged particle beams in a medium is considered. In this case,
the damping decrement in the absence of a particle beam exceeds
the maximum increment of the beam instability, which occurs in the
medium without dissipation or other losses of RF energy. Under the
conditions of the development of dissipative instabilities, one can
find the regimes of the most efficient energy extraction from the beam
particles and, accordingly, the largest energy flux from the system to
the loss channels. It is shown that this effect of anomalous energy
extraction from the beam is achieved due to the synchronism between
particles captured by the field and the wave decelerating under
conditions of such instability. It is noted that in the nonrelativistic
case this effect will be preserved for multimode instability modes.
It is noted that the inclusion of nonlinearity in the mechanisms
of energy loss in a medium usually reduces the absorption
decrements in the absence of a beam. Such a process can lead to
a change in the nature of instability, translating it into a reactive
mode. The case of taking into account dissipative processes directly
in the beam of charged particles is also considered, which
corresponds to the case of negative dissipation, in which the field
growth can be significant.

SECTION 10.
DISSIPATIVE BEAM INSTABILITY

Abnormal beam energy loss. In real systems, there are several channels
for the loss of oscillation energy resonantly excited by a monoenergetic beam of
charged particles (the beam velocity is close to the phase velocity of the
eigenwave of the system). The use of such monoenergetic beams in traditional
and plasma electronics [10-1] is extremely effective. The nonlinear theory of the
interaction of such beams with a plasma-like medium under the conditions
of a relatively small level of dissipation and insignificant energy losses has been
studied quite well [10-1 — 10-6]. Let us consider below systems with a high
level of energy absorption.

The parameter ® in this case corresponds to the ratio of 6 (@, k), which

is the decrement of oscillation damping in the absence of a nonequilibrium
element (beam), to y(w,k)|s_owhich here is the maximum increment

of nondissipative instability (i.e., in the absence of losses), that in this case 1s equal

to (v3/2)(w,/ a)o)2/3 @,; in this case @, is the frequency of the waveguide

eigenwave, and @), = (472€2nb0/ meo)l/2 1s the plasma frequency electron beam
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(here e,m,y,n,q, are charge, electron mass and unperturbed beam density),
a)b << C()O
© =9, |nb0:O ly(@,k) 5. (10.1)

The modes where ® >1 are of interest in this case; here the greatest
energy flow from the system to the loss channel is achieved. It was in the
analysis of such dissipative instability regimes that the phenomenon of
anomalously large energy losses of beam particles was discovered [10-7].
O©=(5,/®,)w,/ w,)*” is a fair expression for ®@. The increment of dissipative

instability at ® >1 is equal to
I _ 1/2
mao = w,(w,/op) "~ /2. (10.2)

We can make sure that the energy of perturbations in the system is
negative, that is, the presence of perturbations leads to a decrease in the total
energy of the medium — beam of charged particles system.

Let us consider disturbances in the medium and disturbances in the beam
(i.e., disturbances in its density and velocity). We can see that at values ® > 1,
the energy of perturbations in the beam exceeds the energy of perturbations
in the medium through which its particles propagate. The total energy density
of the system can be written as

W =W, +W ~ %nbomeovg —%| EP 0, (10.3)

that is, the energy density is less than the energy density of the unperturbed
system and continues to decrease with an increase of amplitude of the electric
field of the perturbation | £ |. It can be shown that, at large values ® , the

increment decreases by a factor of time @, and the field amplitude which is

achieved is smaller by a factor ® in comparison with the non-dissipative case.
The one-parameter system of nonlinear equations, which describe the

relaxation of a monoenergetic beam of charged particles in a dissipative

medium, can be represented in the form
1/2

A/ 07 =-OA4+ j d&,-exp{-2mi&)} (10.4)
~172
27-d*E/dr? =—Re[A-exp{27i&} ] (10.5)
wherer =t(2y /3"?), A=eEk/m,2y/3"?)?, 27l =kz—w-t, O=51,_0/7 5=
In this case, the law of conservation of energy takes the form
d |A|2 1/2 de ,
@ AL o ag, %oy = —e. 4P (10.6)
5 Jdgo—2) | A

-1/2
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The limitation of the growth of the field amplitude, as in the case of
reactive instability (see [10-5]), is due to the capture of part of the beam
particles by the wave. Oscillations of the trapped particles of the beam (whose
frequency increases with an increase of the field amplitude) lead to a phase
mismatch between the wave and the beam, and the increase in the wave
amplitude is replaced by the regime of energy exchange between the beam and
the wave. The dependence of the amplitude | 4 | versus time 7 and increase

in beam losses for values ® = 0; 3 are presented in Fig. 10.1.

15 ,q N oD %
A
1.0 ' \ll |/ \\t 5
ost | V.U Y
I 6=3
ol Z - : : . 0

a) 0)

Fig. 10.1. Dependence of the amplitude of oscillations (a),
the energy loss of the beam 1 (%) (b) on time.

Dotted curves correspond to the case ® =()

The energy loss of the beam in the dissipative mode is several times
greater if to compare with the case of nondissipative (reactive) instability.
By changing a single parameter ® of the
problem, it is possible to obtain [10-7,
10-8] the dependences of the maximum
achievable amplitudes |A4| .., increment
Ima®, and relative rate of energy output

1.5

1.0

(%) , shown in Fig. 10.2. 05
The phase velocity of a wave at large )
values in such a system decreases over L
time and the average velocity of the beam 9 ¥ o)

particles trapped by the wave also synchro-
nously decreases. Considering the beha-
vior o}; the beam particles [10—%, 10-9], we , of oscillations is | A |, (1) ’_the
are convinced that the wave with trapped ~ crement dln{| A|/| 4|}/ ot is (2)
particles is a long-lived formation, which ~ @nd the relative rate of beam energy
explains the effect of an anomalously /0SS is the rate of energy output from
large energy take-off from the beam he system «®| A~ (3) as a function
(see Fig. 10.3). of the parameter ©

Fig. 10.2. The maximum amplitude
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h b The results obtained are valid
=161 RS for a relatively narrow spectral
[\ width of the initial perturbation,
S when an instability mode close to
iy | ™ oL\~ single-mode is achieved.
T i Multiwave modes. In the
=9 =6 multiwave mode, effective capture
of particles into a potential oscil-
| ﬂ I [\ AN lation. well is poss%ble. only with
0 09 10 ., 0 09 10 o5 sufficient synchronization of the
VVO (’ﬂ) spectrum of excited oscillations
with a decelerating beam. With
Fig. 10.3. The evolution increasing absorption or removal
of the velocity distribution function of energy from the system, the ave-
of particle particles f, (V') rage velocity of the beam particles

and the group velocity of the exci-
ted wave packet synchronize both at the linear stage of instability (see Section 3)
and in the nonlinear mode [10—10], which at least in the nonrelativistic case allows
achieving a noticeable energy extraction from the beam.
The equations for the real amplitude and phase of the spectrum mode can
be written as

1 aAOp AOp 1/2 .
—— L@ =R, [ (I+V,/V,)Sin{2zpS =@, ,}-dSy,  (10.7)
p Ot p _12

a¢0p p 1/2

S LA, RopA—Op_i[/z(lﬂirV/VO)Cos{Zﬁpg“—(pop}l-dCO. (10.8)

The equations of motion of particles simulating a beam can be
represented as

d—4: v, (10.9)
S 2
dT 5 (72);0 in(27 p& —@,,}, (10.10)
moreover
V _
Vb(O) = Vb |T=o: 0, Yy = 7[;(7) = [1 - Vozb(1+ V_b)Z /CZ] 1/29

0b

— 1 a)pe 1 _ —2 1/2

- 27p, O )ﬂbo’ Pro = '

The integral of the system of equations (10.7) — (10.10) 1s

2 2 1/2
st S Ja e L4 25C 206 [ =)y =Comst. (10.11)

p>0 87p’ Wpe 1
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It is easy to see that the integral (9.12) is the law of conservation
of energy in the "relativistic electron beam — plasma" system. It can be shown
(see Fig. 10.4) that at @ = 0.5 a non-relativistic beam and the energy extraction
rate are the highest, although this is not so pronounced as in the case
of a single-mode regime [10-10].

\

0.0084

0.0044

0 01030507 1 3 5 7 6 0 01030507 1 68
Fig. 10.4. Values as a function Fig. 10.5. Values as a function
of absorption © for a weakly of absorption © for a strongly
relativistic beam y,, =1.6 relativistic beam y,, =10
(1 — Gyux, 2 —divided by 4 (1 — ay..., 2 — magnitude multiplied by 10
- 5 . 3 1/2 -1 5 3 _
00/ w, = -~ {1+(5) C 50)/ w, za)—-{1+(5)1/2®} )
e
24 52 t A4 2 T
3_2(198—’;0.2@,2 01; o7) 2 3 2dlv1dedby3 2
p>0 ﬂp o P Z(P +p0,2@.ZT:A0p 82’))
multiplied by the 30) pe 87 p* ~ P’

Spectrum characteristics. 1t is possible to determine the characteristics of
the spectrum in the interval from 7,,,,, (when the first maximum of the energy
density of the oscillation spectrum of the beam is reached) to 7,,,, =50—-60.

Fig. 10.6 and fig. 10.7 present the average change in frequency with respect to
the frequency of the main wave

s do, __ 1 dr-{w5 c;(pr()}

a)pe d’[ 7’-MAX _TMIN TArIN pe

<Aw,, >=<

(10.12)

and the relative standard deviation of the frequency value from its average
value (spectrum width)

1 T‘ o dg S Aoy oy
[<(Aw,,~<Aw,, >) > =[———— | dr-{( 0)—< 0 >12]
P P v — Ty J @, dt w,, dt (10.13)

for different values of the absorption level in cases of weakly relativistic and
relativistic electron beams
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Fig. 10.6. The average value < Aw ,, > as a function of absorption ©

for a weakly relativistic beam y,, =1.6 (left)
and a relativistic beam y,, =10 (right)
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Fig. 10.7. Standard deviation [< (Aw,,—<Aw), >)? >]"?

as a function of absorption ® for a weakly relativistic
beam y,, =1.6 (left) and a relativistic beam y,, =10 (right)

Understanding of the frequency shift and spectrum width allows predicting
the nature of the processes in the system. In particular, with a sufficiently wide
spectral width, some instabilities whose increment is less than the spectral width
do not develop.
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SECTION 11.
BEAM INSTABILITY IN NONLINEAR
AND NEGATIVE DISSIPATIONS

Development of beam instability in hot plasma. In plasma with a Maxwel-
lian electron velocity distribution, the energy of the Langmuir wave excited by the
beam is absorbed by the plasma electrons, and the linear decrement of this
absorption (Landau absorption) is

O =~N7/8(w, 0)3/k3vTe)exp{ a)z/ksze} (11.1)

where v;, is the thermal velocity of the plasma electrons. The equations

describing the nonlinear dynamics of the wave excited by the beam (cf. (2.12),
(2.13)) have the form [11-1]:

1/2 1/2
04/ 07 = j d&,,-exp{-2mi&,} —8x- @j d< jdnonoexp{ 27ié,}, (11.2)
-1/2 -1/2
27-d*, /dt? =—Re[A-exp{27rz(§b,p}], (11.3)

where ® =6, /y, ¢, is the Landau damping decrement for Langmuir oscil-
lations, ¥ =¥ |g_o=V3(®,,@2,/2)"*/2 in this case is the increment of
hydrodynamic beam instability in the absence of absorption (O =0),

wy, = (4re’n,y /m,y)''? 18 the Langmuir frequency of the electron beam, and

1/2

®,, =(4m’n,y)/m,,)"* is the Langmuir plasma frequency, (e, m,,, ,,, 1,, are
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the charge, electron rest mass, and undisturbed beam and plasma density);
278, o =kx, o — ot and 7, ,=(kv, ,, —®,,)/ 27y, in this case the index b

corresponds to beam particles, and the index e corresponds to plasma particles.

In the nonlinear regime of the development of beam instability, the field
amplitude of the excited wave experiences modulation, and large-scale
modulation 1s caused by oscillations in the potential well of the quasiparticle
(i.e. captured beam particles). The regime of energy exchange between the trapped
particles of the beam and the wave is accomplished. Since at the initial moment
the beam is assumed to be monoener-
getic, this quasiparticle is quite compact,
and accordingly, the modulation depth
is large.

Plasma electrons near the reso-
nance V=a/k are also trapped by the

wave field. For parameter values ®,
which are appreciably greater than
unity, the plasma electrons captured by

- the wave field also form a more diffuse
and denser quasiparticle, whose move-
ment in the wave field leads to small-
scale and relatively shallow wave modu-
1. ®=02 0 =3 30 =5 lat - ) :
ation. Moreover, this modulation is

4.0 =7,5.0 =10 superimposed on deeper and relatively

slower changes in the wave amplitude due to the motion of the captured beam
particles in the potential wave well. In this regime, an energy exchange between
the formed quasiparticle and the wave also takes place, while the average
absorption of wave energy by plasma particles during these oscillations decreases.

Thus, we can assume that @ " (the effective value of the parameter ®) is

£

Vil a

Fig. 11.1. The structure of the field
of the envelope of oscillations at

somewhat reduced. Beam instability passes from a dissipative regime to a more

reactive regime, which corresponds to lower values ® i
e

Change in the nature of beam instability with the excitation of surface
waves in plasma with a blurred boundary. When a surface wave is excited by
an external source, its field amplitude increases, and the fraction of its energy
absorbed in the plasma resonance region, which is located on the diffuse plasma
boundary, also decreases [11-2, 11-3].

Suppose, at first, the regime of dissipative instability was realized with

large values of the parameter ® , which here also corresponds to the ratio S5, —

the damping decrement in the absence of a nonequilibrium element (i.e., the
beam) y(w,k)|s_, — to the maximum increment of the nondissipative
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instability. In the process of instability development, a decrease ® and,
accordingly, a change in the instability mode occurs [11-2]. For more details
see annex XII.

The “wave — trapped particle” structure in a weakly ionized gas flow.
In flows, it is also possible to implement the “negative friction” regime, when
the flow is a weakly ionized medium, the particle velocity of which is quite high.

The electronic component of this stream is capable of exciting oscillations
in the waveguide system through which it is transported. Significant friction of
the electrons decelerating by the wave on neutral
(its density is much higher) and the ionic
components of the flow leads to the restoration
of the velocity of the electronic component.
Thus, long-term synchronism between the
electrons of the flow and the wave is achieved.
In addition, such ‘“negative friction” leads to
their spatial grouping. The equations describing 0 o WS
the process of electron excitation of a weakly T
ionized stream of natural oscillations of the
medium can be represented in the form [10-4]

1/2
04 /0t = [ d&,-exp{-27i&}, (11.4)

-1/2

2(d*E 1 dr* +©,dE | dr)=—Re[A-exp{27i&}], (11.5)
where o =Qy|_/\3)/ ®,, 2xE=kz-w,t n=(kv-,) a"e,,

Fig. 11.2. The dependence

of the amplitude of wave A

on time for various values
of the parameter © |

A=kEa'” | 4ren,,, ©=v/a"w, up to a numerical factor, the ratio of the

collision frequency of the flow electrons with nll‘

the neutral (or ionic) component of the flow . 05 108
to the increment of beam instability in the 0 j

absence of friction between the flow compo- _1" c/ ©=?
nents. The solution of the one-parameter sys- n

tem of equations in this case is illustrated in -g5 o]t 05¢
Fig. 11.2. The oscillatory increase in the field = 1
amplitude is replaced by a monotonic increase 17! =19

even at parameter ®; > 0,5.

The behavior of the beam electrons on
the phase plane is shown in Fig. 11.3. A rapid
increase in the field amplitude leads to the
grouping of the beam captured by the field
electrons into dense bunches, the volume of which in ordinary space decreases.
A quasiparticle is formed, which is located in the phase of the field, which

Fig. 11.3. Behavior of beam
electrons in the phase plane

for different time instants with
parameter value © | = 0,5
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contributes to the selection of energy from the electrons by the wave. On the
other hand, friction against heavy particles of the flow leads to a restoration
of the electron velocity. Since friction is proportional to the velocity difference
of the components of the flow, the electrons are slightly behind the main flow
(that is, the so-called slip mode occurs).

The process of implementing the regime with "negative friction" drama-
tically increases the efficiency of excitation of oscillations, the amplitude of
which can be many times greater than the values obtained from the conditions
of particle capture by the wave. Such a phenomenon can lead to additional
ionization of the flow, which is, for example, of interest for MHD devices for
energy conversion.
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CHAPTER 5. Superradiation modes

A self-consistent interaction of a bunch of monoenergetic
charged particles — a short beam of electrons, propagating in a
plasma, are considered. It is shown that the macroscopic dielectric
constant in the volume of the beam is negative, that is, the particles of
the beam are attracted instead of repulsing. However, the developing
instability process, which corresponds to the superradiation regime,
leads to intense spatial modulation of the beam density and the
formation of a wake field behind the beam. For short bunches, the size
of which is less than the wavelength of the wake field, a self-profiling
mode is possible when fields are formed in a separate region of the
medium, the intensity of which corresponds to the radiation of all
particles as if they were collected in one point. The similarity of
dissipative instability processes and superradiation modes for
particles of a moving bunch and a system of oscillators whose centers
are at rest is shown.

SECTION 12.
FORMATION OF THE THIN STRUCTURE
OF ELECTRON BUNCHES INJECTED IN PLASMA

Below, let us practically consider monoenergetic bunches of charged
particles moving with velocity V,, whose longitudinal size a does not exceed

Vol 0o) @,/ 0y)~>"? (where oy =@, =(4me’n,,, /m,,)

frequency and 72, is the unperturbed plasma density and @, = (4re* g/ my,

12 is the Langmuir plasma

1/2
)

is the plasma frequency electron beam 71, is the unperturbed beam density) so

that the energy of plasma oscillations is not accumulated in their volume. Plasma
oscillations excited by a short bunch of charged particles lag behind him, forming
the so-called wake trace.

An example of negative macroscopic permittivity [12-1]. The
effect of the reversal of Coulomb forces in the volume of a single
monoenergetic bunch is due to the fact that when integrating over the wave

numbers of the fields in the rest frame of the bunch (& =z—Vt,t) created by
each of the bunch particles and depending on the dielectric constant
eo,k)=¢(0,k)=1-(w, /kv)’, the contribution of large-scale density
perturbations (small values of the wave number k ) exceeds the contribution of

small-scale ones. For example, in the one-dimensional case, choosing the
distribution function of particles of an unmodulated bunch in the form

JAAY) =(N/a\/7_r)expE§2/a2)-§(v—v0), for the field strength we shall get the
expression



~ 66 ~ Selected chapters (theoretical physics)

E(£)=2i|e| N[ dk-expliké —k’a’ /| 4}[k-£(0,kv )] ~

(12.1)
~dJr e|-N-Eexp{-&>/a’}/a-¢,,,

where ¢ . = —a);ea2 /2v; <0 is the value of effective dielectric constant.

It can be found [12-1] that in the three-dimensional case, for a bunch of such
dimensions, the macroscopic permittivity in its volume is also negative. That
is, in the case of a moving monoenergetic electron bunch, its particles do not
experience repulsion, but attraction. In contrast to the case of electromagnetic
radiation generation, when a generating bunch, which is a source of energy,
experienced both focusing and defocusing forces, the excitation of longitudinal
waves in the plasma simultaneously led to radial [12-2] — [12-4] and
longitudinal [12-1], [12-5] — [12-9] focusing. The superradiation process under
these conditions, which is similar to beam dissipative instability (about this
similarity, see below) generates fields inside the bunch that exceed in

kK’a® >1times the focusing effect of the reversed Coulomb field, but does not
allow the beam to expand in the longitudinal and transverse directions.

Indeed, at first glance, the intrinsic fields of the bunch, the longitudinal
dimensions of which exceed the length of the emitted Langmuir wave, should
lead to compression of the bunch as a whole. However, instability develops in
the volume of the bunch, which, due to the spatial grouping of its particles, sharply
enhances the wake radiation both outside and inside the bunch. Therefore, the
dynamics of a monoenergetic electron bunch is determined precisely by the
development of the discussed instability. The first attempts to describe self-
consistently the interaction of particles of a short bunch with the field of their
own radiation, apparently, were presented in [12—7, 12-8].

This channel of energy loss (i.e., wake radiation) has a noticeable effect
on the development of disturbances in the volume of the bunch and, in general,
on the formation of its fine structure. The equations describing the nonlinear
dynamics of an electron bunch in the one-dimensional case propagating through
a dense plasma are as it follows (see annex XV)

ds _ dv _
E_—V, i E(£), (12.2)
BE) =~ > cos[2m 4,6 €] O1€, ~9), (123

where 27& =K, (z—V,t), v=K,(V V) 2xy,, 7;=€KM/m,, g¢=(1+Av)",
A=2ry, |KJV, T=y, t and M is the total number of particles in the bunch

E=eK,E/2zxm,y}, E is the electric field strength, f, is the statistical weight

of a large particle which models the beam.
The amplitude of the radiation field of a bunch, the size of which is small
compared to the wake (plasma) wavelength 27 (V,/®,,.), decreases monoto-

nically over time. If the initial longitudinal size of the bunch a is considerably
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greater than 27(V,/ w,,), then the initial radiation amplitude is small and the

macroscopic dielectric constant of the plasma for such a bunch is negative,
so it can be expected that it will be compressed as a whole.

However, in the process of rapidly developing instability of a dissipative
type (since the effective decrement of oscillation damping in a bunch 6, can
be defined as the ratio of the energy flux of the oscillations leaving the bunch

to the total oscillation energy in its volume O, =V,/a, and a parameter
O=0,/yl5., = Vy/la-o)w,/am,)?>>1)) a structure with spatial period
27(Vy/w,,) 1s formed in the volume of the bunch. The occurrence of such

a fine structure of the bunch is accompanied by an increase in the amplitude
of the wake trace. At the nonlinear stage of the process, particles are captured
by the field of increasing oscillations, phase mixing occurs, the fine structure
of the bunch is destroyed, and the amplitude of its wake trace decreases.
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Fig. 12.1. Behavior of particles of short beams
of different lengths (K a = 0.6m, (2)6 7 , (3)10z) with
the same number of particles on the phase plane (&,v).

Let us note that in the case of extended bunches with the same fixed
number of particles (aa)pe 272V5) > 1 the largest radiation amplitude achieved

during the instability weakly depends on the initial longitudinal size of the
bunch, which allows considering it (amplitude) as maximum possible and
approximately equal to unity at the selected problem scales. Let us pay attention
to the fact that if all the particles were collected to a point, then the amplitude of
the wake field would be equal to two, which is easy to see from relation (12.3).
That is, the degree of radiation coherence is 25 %.

Therefore, to some extent the usage of charged particles for the accele-
ration in the wake field of single electron bunches is not critical with respect
to their longitudinal size [12-9, 12-10].Some time later incoherent radiation
is the same after the destruction of the structure.
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As shown by experimental studies and numerical experiments conducted
at the NSC KIPT, a sequence of clumps, which is not too big, also can
synchronize its dynamics, which increases its stability and coherence length.
Then the bunch particles are captured by the field, the periodicity of the
structure, and, consequently, the coherence of the radiation are violated.

It can be shown that for three-dimensional clusters of charged particles

of the same sign moving in a plasma, the longitudinal dimensions & I of which

21(Vy/ @g) < ay << 2(Vy/ )@y o) >, (12.4)

focusing forces appear in their volumes, compressing the bunches as a whole
in the transverse direction (the dielectric constant of the medium is negative
for them [12-11, 12-12]) The radiation of such bunches is also amplified during
the development of instabilities that form the fine structure of the bunches
[12-13 ]—[12-16].

Clusters Usually, the occurrence of a spatial structure increases the
energy flux into the loss channels, which reaches its maximum at the moment
of the largest amplitude of this structure. However, there may be cases when
the structure — a cluster of only a few charged particles remains stable [12-17,
12-18] and forms a minimal energy flow during the relaxation of the system.
Let us construct a cluster of moving charged particles, and the first of them —
the leader, let us place at the origin of coordinates. We arrange a particle having
the same velocity at the point where the electric field of the leader is zero or the
potential is minimal.

By placing each subsequent particle at the minimum of the potential of
the field created by the particles located in front, we can build a cluster whose
stability is very high, and the initial velocities in the cluster rest system are zero

E=0, K/, = —Zn:asin (1/~/m). (12.5)
m=2

The forces exerted by the radiation field on each particle of such
a cluster are the same and equal to the braking force of an individual particle.
Let us mention that a similar structure (a cluster) can be built in a three-
dimensional case. The amplitude of the electric radiation field behind the

cluster, the number of particles of which is equal to M, is ~/ M times the
amplitude of the radiation field of a single particle. Thus, the radiation intensity
of such a cluster of M particles is minimal and proportional to M. In the
previously discussed cases, the radiation of coherent structures was propo-

rtional to M 2 with a numerical factor, which is less than unity, determining
the degree of coherence of the structure [12-18]. The cluster size is determined
by the stability of the particles located in its tail, and the particle binding energy

for sufficiently large m is proportional 1/~/m , that is, it rapidly decreases
with the number m of the particle counted from the leader of the cluster.

Self-profiling of a short bunch of electrons moving in plasma. The
problems of obtaining the largest amplitude of the wake field behind an electron
bunch arose in connection with the analysis of the possibility of the usage of
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high-energy and high-current short electron beams — bunches moving in plasma
to accelerate ions [12-19, 12-20]. Despite the fact that the bunches, whose
initial sizes is much smaller than the radiation wavelengths, are unstable in the
one-dimensional and three-dimensional cases (see, for example, [12-8, 12-21])
with a certain preliminary profiling of the particle density and velocity, one could
hope significant wake fields, comparable to the field of a bunch, the particles
of which are collected in a very small area of space [12-21 — 12-24]. If the goal
was to ensure the stability of the bunch, then it was preferable to use longer
clusters, which made it possible to obtain significant field values both inside
such a short beam and in their wake radiation [12-13 — 12-16, 12-25, 12-26 .].
The wake field behind the radiating particle in the system of its rest moving
with speed v is Cos[k ' ]= Cos[k(x—vt)]. In cold plasma, the group velocity of

Langmuir oscillations with a frequency @ ,, 1 equal to zero, therefore, if we go to

the laboratory reference frame, the field amplitude at each point will change as
Cos[w,t)]= Cos[kvt]. It is important to note that this is one and the same field,

only in different reference frames. If the speeds of each particle are different, then
these cosine waves will have different values of the wave number k= Wy, /v

Moreover, if the configuration of the bunch particles in space does not
change, the general field of its wake field will be represented as the interference
of individual fields of emitted particles already having a velocity spread. Along
with this, in the laboratory reference system, this field represents the interference
of oscillations with a different phase. There are configurations and a correspon-
ding spread in the velocities of the particles of the bunch of emitters, which make
it possible to achieve a small spread in the phases of the fields in separate,
sufficiently extended areas of the laboratory reference frame. Such profiling of the
bunch in terms of velocity and density was proposed to be specially created to
achieve the maximum value of the wake field [12-25], at least in certain regions
of the plasma space. It is clear that in the rest system of the bunch as a whole there
was the field maximum region moving in the opposite direction at approximately
the same speed [12-10].

Let us show below that such profiling occurs spontaneously in the beam
volume. In the rest frame (where the beam as a whole is at rest), a field
maximum lags behind the beam at the same, but opposite speed. That is, in the
laboratory frame of reference this area remains localized. The modes of
excitation of the wake field, which are achieved in case of short bunches, whose
size 1s less than the length of the wake wave, are of great interest for this issue.

From the calculation results’ it follows that for bunches the longitudinal
size of which is smaller, but nevertheless comparable to the wavelength, the

? The program that implements the mathematical model of the problem was created using JCUDA
technology. [12-28].
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phenomenon of self-profiling of the bunch is detected, the radiation efficiency
of which in a certain region behind the bunch reaches a value field strength E

in selected ynits, equals 2 (as if all the beam particles were collected at one
point in space.

Indeed, for bunches whose length exceeds several wavelengths of the emit-
ted waves, the value of the field amplitude in this normalization is always less or of
the order of unity [12-10]. In the case of a bunch, where all particles are assembled
to a point, the amplitude of the wake field in the selected representation (12.2) —
(12.3) turns out to be two times larger and reaches its absolute maximum — a value
of 2 [12-27]. Consider a bunch with the size of 0.5 wavelength. It turns out that it
1s generally inhibited, forming the characteristic triangular distribution of particles
in the configuration and phase spaces (see Fig. 12.2 and Fig. 12.3.)
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Fig. 12.2. Particle distribution in space & (left),

particle velocity distribution vV (right),
a).t=1;b).t=2;c).7 =3.

It is the formation of such triangular distributions, similar to the initial
profiling bunch in [12-25, 12-27] that leads to interference of the fields
of the studied particles in a certain region of space, which moves away
from the beam in its rest system with a speed in the units of measurement
chosen by us

< dsé .- KJ,t 1

= = — 12.6
dr 2ay,t A’ (12.6)
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It can be seen (see Fig. 12.3) that
the region of the absolute maximum of
the field shifts with the velocity of the
bunch in the opposite direction from: it.
Moreover, the beam i1s located on the
right side of the figure in the vicinity -3 T e

-50 25 0 s

of the point & = 0. Moreover, in the a

ity
it

laboratory reference system, this region
of the field maximum does not move.
Some distortions of the field re-
gion are associated with a small change
in the beam profile in this time mterval.
This model qualitatively describes the -5 25 0
process of the dynamics of a bunch and
its radiation, however, it makes it easy
to detect the effect of beam self-profiling.
The achievements as a result of such
self-profiling (in a region that exceeds
the initial size of the bunch by more than an order) of magnitude are significant
wake field amplitudes almost equal to the maximum possible value of the
radiation field of the bunch, particles of which are collected in a very small area.

Fig. 12.3. View of the radiation field E
in the reference frame of the beam
as a whole at time points

a) t=2andb) T=3
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SECTION 13.
DISSIPATIVE INSTABILITIES
AND SUPERRADIANCE MODES

Electron beam in a longitudinally bounded system. In plasma, the dyna-
mics of an electron beam, the longitudinal size of which is b, and the unperturbed
velocity is V,,, can be described by the following system of equations in its

simplest one-dimensional case: N
OE/0t=-6-E+ N> Cos{27¢,+ ¢}, (13.1)
=1

N
Op/dr=—N"-> Sin{27 +¢}, (13.2)

=

27-d*&;/dr? =

E-Cos{27¢; + ¢},

(N -9)*2 cos[27 g(&,~EN] U (& - &),

13.3
. (13.3)
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where 278 =kz—at, T=t"Y, &

- :47zezn06 ,/m,, e,m, are the charge and

mass of the electron, 7,,, are plasma and beam densities, Sp 1s the effective

damping decrement of oscillations that can be defined as the ratio of the energy
flux of the oscillations, leaving the beam volume to the total oscil-

lation energy in its volume'’ 6=V, /a, 9=5D/ V4 |5:0=(V0/ b'wpe)(a)be/ wpe)_2/39
i =(n0b/2n06)-a);e, M=n,-b is the total number of particles in the beam,

g =1+(v—vy)/v,)" =(1+Vw,,/ 7)"'which is easily determined from the equation
2nd&/dr=k(v—v,)/y=V.Here U(x)=1;x>0and U (x)=0;x<0. The
parameter 6=0,/y corresponds to the ratio of the damping decrement o

in the absence of a nonequilibrium element (here, the beam) to the maximum
increment of nondissipative instability (i.e., in the absence of losses) ¥ .

For clarity, we switched from integration over the initial states of particles
to the usual summation of their contributions to the field. The upper term in the
right-hand side of (13.3) should be used to describe the beam; the integral field
of which E-Cos{27¢;+¢} can accumulate in its volume. The lower term on

the right-hand side of (13.3) describes the total field of particles of a sufficiently
short beam at large values @ . Let us note that the lower term on the right-hand

side of (13.3), generally speaking, determines the total spontaneous emission of
the Langmuir wave with the frequency @, of all beam particles.

The integrated field E-exp{27zi¢;+ip} can be formed due to the initial
perturbation or it occurs when the RF energy is accumulated in a sufficiently
extended beam in the cavity or waveguide. In this case, the beam particles do not
directly interact with each other and are associated only with the wave field.
Generally speaking, such a field is usually considered in problems of generation
and amplification of induced radiation. For small & , that is, for an extended
beam, this field accumulates in its volume and in many cases the lower term (13.3)
can be neglected if the number of particles in the beam description is very large.

For large values 8 >> 1, if initially there was not any an integral field in
the system (not a waveguide, but an open system), equations (13.1) and (13.2)
together with equation (13.3), where the upper term on the right-hand side is held,
are no longer applicable. In this case, the interaction of the particles with each
other is significant (the particles that are in front in the direction of motion act
on the particles following them, but not vice versa). When particles are grouped
in a beam and their phase synchronization arises at the same time, the formation of
the so-called superradiance is possible; it is described only by equation (13.3),
where the lower expression should be kept on the right side. If the beam is short
enough, the energy of the field in time b/V, < y~! (i.e., @ > 1) is carried out

' See, a representation of such an absorption, for example, in Annex I, expression (L.6).
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from the volume of the bunch. In this case, the field in the beam volume is
determined only by the second — lower term of equation (13.3).

The field growth is due to the independent grouping of particles and an
increase in the coherence of their radiation, which forms the field of super-
radiance. In [13-1, 13-2], it was noted that for the same values @ >1, the
increment of the superradiation process of a beam limited in the direction
of motion of the beam is comparable to the increment of dissipative beam

instability 7, za)pb(a)pe /6,)"? =a)pb(kb)1/ 2 the energy loss in which is determi-

ned by the transfer of energy from the beam volume.

That is, spatial modulation of particles, similar in both cases, led to phase
synchronization of particles and, accordingly, to increased radiation coherence.
The amplitude limitation in the cases under discussion was due to the capture of
particles in the wave field, which corresponded to the equality of the oscillation
frequency of the captured particles in the potential wave well increment

Q=+ekE/m=y,.

The maximum value of the field amplitude, arising during the deve-
lopment of instability for beams whose length is several times longer than
Langmuir wavelength, is equal and depends only on the total number of

particles E, .. ~2mxeM [13-3].

It is not difficult to see that the maximum radiation intensity in the
superradiation mode for beams whose length is several times the length of the

2
: ey ..
Langmuir wave reaches values Fy, =v-E2, /4r= i M?oc M? | ie., it is

proportional to the square of the number of all particles in the bunch M =n,-b.

Let us note that the intensity of spontaneous emission of the same (but still
homogeneous, not modulated) beam-bunch of particles is

P =v-E: |4r=me*vM c M (13.4)

spon spon

and 1is proportional to the total number of particles.

Thus, superradiance is the result of the self-synchronization of emitters,
the spontaneous field of which at the initial moment was incoherent (due to inter-
ference of the individual fields of each oscillator, in particular, due to random
phase spread). It is important to emphasize that the field intensity in the case

of the development of dissipative beam instability in a resonator or waveguide
ata dissipation level determined as & =c/y,b and the intensity of superra-

diance of a particle bunch of particles, the longitudinal dimensions of which
are b almost equal to the same density, coincide. Beam instability increments

are almost equal to 7/12) zfo /o, =7/§ /6 (where 7y =7 |5D:0).
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A system of oscillators whose centers are fixed in radiation field.
The issues of oscillator emission in electronics have been actively discussed,
starting from [13—4, 13—-5]. An important circumstance is the synchronization
conditions by the eigenfields of the radiation of the system of oscillators in the
superradiance mode. It turns out that only when the nonlinearity of the
oscillators 1s taken into account, it becomes possible to ensure the
synchronization of the phases of the field and the oscillator [13-6] (see also [13-
7]). Let us consider an oscillator whose charge (electron) moves along the OX
axis, 1.e. x(t)=i-a-exp{—iot+iy}, while Rex=a-sin(ot—y), where
¥ =(x(t),0,z,). In this case, the velocity and current can be written
as dx/dt =a-w-exp{—iot+iy}and J =—e-dx/dt =—e-a-w-exp{-iot+iy}.
The equation describing the field excitation by the oscillator current takes
the form
O’E, 1 0°D, 4z dJ, 4rx
ozt ot o O
The dielectric constant of the medium in the absence of oscillators is set
equal to unity &, =1. Let us seek a solution for the amplitude of the electric

field in the form E = (E-exp{—iot +ikz},0,0), that is E. = E -exp{—iwt + ikz}
, assuming a slow change in the complex amplitude £ (7,z) -

B ko, | E (L) <<k (136)
E (t,z) ot E (t,z) 0z
Generally speaking, the field excited in the system of oscillators consists
of the sum of all the fields of individual oscillators.
The field of the waveguide or resonator. However, the resonator or
waveguide can form the field in such a way that the form of the field will not
depend on the radiation of individual oscillators. Note that such a field, generally

speaking, should consist of traveling waves in two directions (k > 0)

e-a o -i-expi{—iot+iy}-6(z—z,). (13.5)

E =E, -exp{-iot+ikz}+ E_-exp{-iot—ikz}, (13.7)

where the slowly varying complex wave amplitude has the form
E, =|E, |-exp{ip.} . The interaction of oscillators with these fields can
be described by the equation

OE 4
2im, (a—;+ 5,)=—ew? =20

[a,dz-expliy, Fiks}-6(z—-z), (13.8)

where added ¢, is the decrement of wave absorption in the absence of sources,
A4, =a;exp(iy;) .
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Let us represent the equations of motion in the form

d V. e
— + a)le. =——F (z,,t)
m >

dt [ |y (13.9)

where X,(¢) =i-a, -exp{—iowt +iy} =id-exp{-iwt},
vV, =w-a,-expi{—iot+iy} = wA-exp{-iot} .
Using the following notation

e| E(1)|explip}
my,w,da,

=E@t) | yt=1,, 1o=n€n/m=w,/4 A =ala,,

3w
kz,=2xZ,, O=clyb=0/y, a= ?(koao)z takes into account the

0
weak dependence of the relativistic particle mass on speed. Let us write (13.8)
and (13.9) in the form
0 1 & o
S B+ 0B =) A expi{32rZ}, (13.10)
j=1

or,
d

. 1 . .
A,—ia(A; A, ) = —E[E+ expi{2nZ }+E_-expi{-27Z;}]  (13.11)

TO

You can get the law of conservation of energy in the form
0 0 &
— 42O {|E. P +|E_ PY=2—D|A.|*, 13.12
(aTO WIE, [ +[E_"} aTO;\ n (13.12)

Let us determine the total radiation field of the oscillators in the same
variables and in the same volume (see annex XVII)

N
EX(Z,TO) _ %ZAS (eiZH(ZfZA.) 0(Z _Zs)+efi27r(Zst) .Q(ZS _Z)). (13.14)
s=1

Taking into account the resonator field and the total field of individual
oscillators (13-15), system (13-10) —(13-11) can be written as

—E,+0-E, =— ) A -expi{F2nZ .}, 13.1
or, B N; yrexpit i (131

iAj—iocAi. = —l[E+ -expi{2nZ }+E. -expi{—27sz}]—lEx(Z,To). (13.16)
dr, 2 2

Dissipative instability regime. Let us consider the dissipative instability
regime below. If there is no distinguished radiation direction, with a sufficiently
large amount of radiation loss, the decrement of which can be determined from
the condition o, > 0FE / Eot



~78~ Selected chapters (theoretical physics)
Sp=(Je<E> /Am)dS| [(< E>* JAm)-dV ~clb, (1317
S Vv

here b =nA =2ncn/ w, at the same time, without violating generality, the
restriction to one wavelength can be taken in calculations.
Equation (13.10) in this case takes the form
1 < ,
E,=—=2 A expi{¥27Z}, (13.18)
Ne j=1
and the equation of motion (13.11) does not change, but can be represented
as it follows
d

T

1 1<
A —ia(A, | A, |2)=—5E(ZJ)Z_NZA1' Cos{27(Z, -7} (13.19)

i=1
where the time scale is changed 7—7/6 and the equation for the field can be
written as

N
E(Z)=E, -expi{2nZ } +E_-expi{-2nZ } :N_2(92Ai Cos{27(Z, -2}  (13.20)
i=1

The energy conservation law in this case takes the form
N o | Aj |2 N .
2 — S =-Re) E(Z)A*,, (13.21)

J=1 J=1

N
let us note that in this case {|E, " +|E_ "} =—Re Y E(Z,)A*, .

j=1
In this case, the field E(Z,) is the field of induced radiation. It is not
difficult to see the nature of the formation of coherence of particle radiation
under the action of a waveguide or resonator field. Neglecting relativistic

corrections, the equation for the oscillator phase ¥, can be written as
o, | 0t =—(e| E | Imoa,)-Sin(p—y,) =~(Q/n,)-Sin(p—-y,) . (13.22)

where eq, | E|w/mw’a’, =2d | E|/nh=Q/n, n,>>1 is the oscillator
energy expressed by the number of field quanta.

For oscillators in the quantum case n, =1, and QQ is the Rabi frequency.
Obviously, the coordination time - synchronization of the phase of the oscillator
with the phase of the field (in the place where the particle is located) n, / Q is

of the same order of magnitude for all oscillators in volume. Let us recall that

the reciprocal of the Rabi frequency Q' in quantum mechanics is proportional
to the probability of induced radiation [13—8, 13-9]. This is the difference
between the oscillators of the classical and quantum systems, where in the latter
case the intensities of the spontaneous radiation fields are many orders
of magnitude lower than the intensities of the induced radiation.
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The intensity of the fluctuations of the spontaneous field is proportional to
the number of particles, and the intensity of the induced field is proportional to
the square of the number of emitting particles. With a large number of particles,
the difference in the intensities of spontanecous and induced radiation is
significant. But when modeling, the number of particles cannot be so large and
the intensity of spontaneous emission — fluctuations can be great, which does
not correspond to physical reality. In addition, classical oscillators are capable
of emitting a large number of field quanta, because for them n, >> 1, therefore,

care should be paid to the results of modeling spontaneous emission, fluctua-
tions, and superradiation modes of classical systems.

If you go to the time scale z=yt—>yt=y.bt/c=y,t/0, then the

e| E() |explio} _p
mywa, ’

variables will look like

N=rt, v =me’M | mc,
30 2 .. o . .
A =ala, kz; =272, o= W(koao) and the dissipative excitation regime
can be described by the equation
d , 1 1 &
EAj—za(Aj |A, Py = _EE(Zj) = _ﬁ;Ai Cos{27n(Z, -7},  (13.23)
and for the field the expression is
N
E(Z)=[E, -expi{2nZ}+E_-expi{-2nZ}]= %ZAI. Cos{2n(Z-Z2))}, (13.24)
i=1
here, the time scale is slightly different 7, = ¢, increment also changed, 7, is

the particle density per unit volume, M =b-n, b - isthe length of the space
under consideration in the longitudinal direction (here, generally speaking, also

b=nA=2rcn/ w). The law of conservation of energy takes the form

N d| Aj ‘2 N .

> - =—Re) E(Z,)A*; (13.25)
j=1 j=1

where summation over j is equivalent to summation over the space of the core.

It can be shown that when @>>1 solutions (13.10) — (13.11) for
[E, -expi{27Z }+E_-expi{-27nZ,}] >[E, -expi{2nZ;}+E_-expi{-27Z;}]/0 and
7 —17/6 coincide with the solutions of system (13-23) — (13-24).

Superradiation mode. In the absence of a resonator field, only equation
(13.16) remains in the form
d

1
— A —iaA’=—FE (Z,1 13.2
d'l'o J J 2 x( 0), (3 6)
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where for E _(Z,7,) the expression (13.14) is valid for the field. However,
passing to the time scale of the corresponding dissipative regime (13.23) — (13.24)
T—7/0, we shall rewrite equation (13-26) in the form

d , 1
d—TAj—lClAi. :—EEDX(Z,TO), (1327)

where

N
E,.(Z,7,)=E.(Z ro)/Q:%ZAS (7“2 -0Z-2)+e . 0Z,~Z)). (13.28)

s=1

Let us consider the field excitation in the resonator whose size b is equal
to the wavelength (without loss of generality, the results are generalized to the
case of several wavelengths), the group radiation speed is C, and the effective

field attenuation decrement is equal to 0, =c/b.
In the dissipative mode, when the increment of the process is equal to

Y=716,=7, /0, in this case J, =%>70 =./me’n, / m, equations (13.19) and
(13.20) describe the process of excitation of such a resonator field E(Z;) by

the oscillators A (r=0)=A, =1 located along the length b in the dissipative mode
(Fig. 13.1 a). If there is no waveguide field, the same oscillators also located
along the same length b can generate a field E,_ (13.28) in the superradiation

mode (Fig. 13.1. b). The increments of these two types of generation and the
maximum field amplitudes are similar.

It is of interest to compare the excited field with a field of another type,
which the same particles could generate (shown in dashed line in Fig. 13.1).

It is curious that in all cases the superradiance field would turn out to be
larger than the resonator field. You should also pay attention to the fact that the
maximum value of the superradiance field is two times less than the most
possible value of the field if all particles were at one point in space (Fig. 13.1 b).
That is, the degree of coherence of superradiance, as well as in the cases
discussed in section 12 and above in this section, is approximately 25 %.
However, at lower ¢, maximum value of the superradiance field and degrees

of the coherence decreases and, when o =0, there i no field excitation.

Let us note that a small number of particles give rise to noticeable
oscillations of the initial field; therefore, the generation processes, especially
in the superradiation mode, do not need an initiating field. However, the
use of such a field, even slightly exceeding the fluctuation (spontaneous),
nevertheless leads to a noticeable acceleration of the process, at least in the
classical case.
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--- 0.4
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Fig. 13.1. a). The dependence of the maximum amplitude of the resonator
field E(Z,) (13.20) in volume on time (solid line) and the estimate of the total

field E,_ (13.28) that these particles could generate (dotted line), b) the time

dependence of the maximum amplitude of the superradiance field E ,_ (13.28)
in the bulk of the bunch (solid line) and the estimate of the resonator
field E(Z,) (13.20), which could generate the same particles (dotted line)

The growth of the field in the superradiance regime occurs from the level
of fluctuations (i.e., from the level of spontaneous emission), the intensity

of which is proportional to 1/ JN , where N is the number of particles.
In real conditions, N is large and the initial field intensity in the superradiance
regime is very low. But in the example above N =3600, and only with weak
relativism of & <<1, it is necessary to use an external field.

Dissipative regime in a quantum system. We are interested in the case of
a large level of radiation loss (®>1). From equation (4.7) — (4.10) of section 4

for ,>7, =0 /N2=2|d, |-|E,|/h

M
a—:—N, (13.29)
or

ON
—=M-N (13.30)
or

where M=/ u,, N=4(5,/7:)-(N/u,), N=<E> /Axhew. The increment
of such instability is equal to y =7, /5, >>,, that is, it significantly exceeds
the natural line width, and the role of the dissipative increment y, is taken by
the Rabi frequency Q =2|d,|E,|/h, where <E®> =2|E, ['=[4zhou,].

Along the length of the system, as in Section 4, let us arrange the sectors

. J
Nj(r:0):2-N(T:0)-Sln2{27r§+a}, (13.31)
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where

1 S
N(7) :EZ;NJ(T), (13.32)

=

Equations (13.29) — (13.30) for sectors have the form:
oM .
L=-N,, 13.33
. ; (13.33)
ON,
Py =M,-N,, (13.34)
where

1 N
M(7) =§Zle(T), (13.35)

=
04 Superradiance regime in
the quantum case. Let us con-
03 sider the behavior of quantum
0.2 emitters, the dimensions of
o1 which are much smaller than
. the length of the emitted wave,
N() 0 5 10 15 and the wave functions of

which do not overlap and their
interaction 1s determined only
by the electromagnetic field.

r
Figure 13.2. The behavior of the number

of quanta N(7) in the cavity volume over time. Asin Section 4, we present

N(z =0)=1/3600, M(r =0)=M,(r=0) =1, the inversion and polarization

S=100, b=27nc/w for each emitter z=(p, —p,,)

and p, as well as the electric

field £+ E* = A(t)-exp{—iowt} + A*(¢)-exp{iwt} . An equation similar to (4.1) for
a field which is generated by each emitter, takes the form

0’E  ,0°E s i
o € o TAmeped@) (1336
whence we define
i-2r-o-N 1 o _ ik|z-z,|
A(z,t) = — t)-e""
(.0) . NZSZP(Zs’ e (13.37)
Using the notation P,=P(z,,7), M,=M(z,7), Lo = H;(z=0)
|d 27z-a)-‘d 2-,u ‘n,-b
_ 2 2A:2'—b E, — ba 01 0
t=1/y, |E[=4rxhoN, |2Al 7.h| by -
_2r _ — _ " _ .
Z—TZ, u=puy, N, p=\d, |-y, P, I', ===, n,-b=N , write down
Y
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the system of equations, describing the generation mode of a quantum system,
similar to superradiance (see annex XXVIII)

d
EMj =-2:[P*A,+PA *], (13.38)
d
ZPJ' =M;-A; (13.39)
where
1 i27|Z—Z
A(Z,T)zNZP(ZS,T)fz el (13.40)

For 4000 emitters distributed at the wavelength, at P,(z =0) =P, exp(ip),

@ is a random variable ¥ <(0+27) P;=0.1 M(z=0)=1 T, =0, we obtain
the following results of the numerical solution. In fig. 13.3, the time dependences
of the field amplitude to the left, to the right
of the system and the maximum inside the
emitter and the average inversion of the (4
system are presented. The field strength has
two approximately equal maxima at times 02
r=132 (E=0.52) and =158 (E=0555).
The first maximum is at the right edge of
the system (Z =1), the second is at the left
(Z=0). These two values of the field

E

Puc. 13.3. Dependence

: , ) e : of the field amplitude on time,
strength maxima in this normalization in 1-max(E(Z,7)), 2~ E(Z = 0,7)
7 b 2 2 b

Fig. 13.3 correspond to values |E ['=|2A |}

_ 3-E(Z=11)
equal to 0.27 and 0.31, respectively.

We draw attention to the fact that the increment ) of the superradiance
process is equal to the increment of the dissipative instability 7. /6,

considered above in the quantum model at the same values of the Rabi
frequency and decrement o,

2 -
:27['a)'|dba| 'ﬂm'no'b: 7o _ Q

hc o, 206,

and the value of the electric field strength E = 2|A| in the accepted normaliza-

/4

9

tion is related to the value used above N (see the notation after formula (13.30))

s:ld, [\E,PIEF &8N . &
|2E=[2A =4 D|4”“2 EET L =42 N=N,
Q. h” - 2rhou, Qo 1, Vo Mo

which makes it possible to compare the efficiency of excitation of oscillations
in the case of dissipative instability and in the superradiance regime.
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Thus, in the quantum model, the dissipative instability and the superradiance
regime are characterized by the same process increments, and the values of the
achieved generation intensity turn out to be comparable.

In the case of dissipative instabilities in waveguides, the initial amplitude
of the integral field is given, while during generation in the superradiance regime,
the field grows from the fluctuation (spontaneous) level. With a large number
of emitters, this level is very small and the development time of the process
becomes very long. Therefore, usually some external initiating field is used
to speed up the process.
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CHAPTER 6.
Cyclotron instability of particle flows

The excitation of TE and TM electromagnetic waves in
magnetoactive waveguides is considered. The low-density plasma
is taken into account in the traditional equations of the gyrotron,
and the change in the operating point and the generation level
in this case is shown. It is noted that the laws of energy conserva-
tion corresponding to elementary processes under the conditions of
anomalous and normal Doppler are also satisfied for more complex
beam systems with stimulated emission of the considered waves
of different polarization. The finite Larmor radius, which is compa-
rable with the characteristic transverse inhomogeneity of the wave
field, is taken into account, in particular for the case of the
anomalous Doppler effect in a plasma waveguide.

SECTION 14.
EXCITATION OF TE WAVES BY A BEAM OF CHARGED PARTICLES

Generally speaking, there are several approaches to the theoretical descrip-
tion of nonlinear modes of excitation of oscillations by electron beams moving
in an external magnetic field, or so-called oscillator beams — rotating electrons.

As a rule, in most works, the Larmor radius of rotation of these electrons
1s small, smaller than the characteristic size of the transverse field inhomogeneity,
and less or on the order of the beam thickness (moreover, the beam electrons
fairly uniformly fill a plane or cylindrical layer).

The scientific school of A. V. Gaponov in the USSR developed methods
for describing the excitation of natural oscillations of waveguides in the
presence of an external magnetic field by an electron beam [14-1, 14-2], which
helped to develop many (vacuum) instruments and devices.

Then, it became necessary to study the processes of excitation by beams
of charged particles (usually electrons) of cyclotron oscillations of plasma, for
its further heating, mainly for the purposes of controlled thermonuclear fusion.
This led to a whole series of works which were published by Kharkov scientists
(see, for example, [14-3 — 14-5]). These papers were devoted to the nonlinear
theory of wave excitation in a magnetically active plasma medium (and
waveguides) by charged particle beams, in particular, with finite values of the
Larmor radius [14-6, 14-7]. In these works it was also shown that the laws
of conservation of elementary effects of anomalous and normal Doppler are
also satisfied for more complex beam systems with stimulated emission.

Similar original descriptions of nonlinear processes of excitation of
oscillations by beams of charged particles, where the main attention was paid to
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taking into account already relativistic effects and the limitations of complex
resonant systems, were also considered by the authors [14-8 — 14-12].

The field of an electromagnetic wave in a cylindrical waveguide is not
difficult to obtain from the equations

(v G [P (141

Where#j is the current of a beam of electrons that are in a constant magnetic
field B,=(0,0,B,). The dispersion relation determining the relationship of the

wave vector l€=(la,kz) with the frequency @ for perturbations in the form

exp {—i(a)t —k,z -7k, )} can be written as

D(a),ic’)E(k;+kj—w2/c2)/(kz2—a)2/c2)=o. (14.2)

In the absence of a particle beam, for the field of the TE wave, which
does not have a component of the electric vector in the direction of propagation

in a smooth cylindrical waveguide of radius 7, , the expressions are

B, =b(z,t)J,,(k r)exp(—iot +ik,z +imb), (14.3)

(B,.E,.)= { fk’"z Cj)lénz}b(z,t)Jm(klr)exp(—ia)t+ikzz+im<9), (14.4)
L

(B, Ey)=lik, Ik, ,—iw/ ck }b(z,t)J ,,(k r)exp(—icot+imB), (14.5)

where the cylindrical coordinate system (r, 6, z) is used; b is the complex
amplitude of the wave, m 1s an integer, J,,(x) and J',,(x) = d J,,(x)/dx is the Bessel
function and its derivative. Usually, in order to describe the field in a waveguide,
many authors use an auxiliary membrane function ¥, =—i(c/w)J, (k) Which

ov,| _o¥,]|
81/1 ‘s_ 8}” ‘r=0

Similarly, it can be stated that the field component E, vanishes at the boundary of

=0.

satisfies the relation (A | +kf)‘I’s =0 and boundary conditions

the waveguide, which determines the values of the transverse wave number
k =k, =x,/r,,and X, —s root of the equation d.J,,(x)/dx=0.

The electron beam occupies a cylindrical layer in the section of the
waveguide. For definiteness, let us consider it to be sufficiently thin, assuming
that all centers of Larmor rotation of electrons are at the same distance from the
axis of the waveguide.

In order to go to a coordinate system which center coincides with the
center of rotation of an individual electron in the beam (see annex XVIII),
that is (R, @, z), one can use the following relations (see, for example, [14—4,

14-13]):
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b=B
by, = B,sin(® —6)+ B.cos(P—0)
b, = —BHCOS(CI)—Q)-I-BrSin(q) —(9) (14.6)

ep=— QCOS(CD—H)JrE,,Sin(CD—H)
ep = Eycos(®—0)+ E,sin(®—0)

Using the values of (14.3) and (14.5), we shall find the values of the
components of the electromagnetic field in the coordinate system with the
center of rotation of an individual electron

( ) bZJ ( s c) m+q(k rB)eXp( ia)t+imCD+iqCDc+i7rm/2)><
em meg (14.7)
x[l,— rkzmsz ,— @ kmscr]’
( ) bZJ ( s C) m+q(kmsrB)exp(—ia)HikZZHmCD+iqCDc+i7rm/2)><
(14.8)
x{lk [ kg s — kla)c}

In this case O, =D +@yt, D=D,+w;, t, where D, D, are the slowly
changing phases, which store information about the initial position of the beam
particle (see annex XVII) z=2z,+V,-f. In the case of resonance of the beam
particles with the wave @w—k,v, ¥nwy, where w,=eB,/mc is the electron
cyclotron frequency, the relation holds m + g =n and in the expressions (14.7)
and (14.8), only the resonance terms can be retained:

(B.bgser) =0T, (Kst) T, (a )exp(2i7z§)|:1,—r%m2 ,—a)’ZJrcﬂ, (14.9)

ms ms

(brseo )=bJ, (Kot )T, (a )exp(ziﬂf){;{kzs_kia)c] (14.10)

1
where ¢ = g(—a}t +nowgt +m®y+(n—m)d , + ETmJ’ a=k,r 1=yl
is Larmor radius of the beam particle. It can be shown that the equation for
the wave field takes the form
oD(w,k) 0b _0D(w, k) ob
Jw Ot Ok oz

2 -1 Ty 27 .
= 4i[rwzb*Jm2 (xms){l— x’" ; ]] [rar[doJE",
ms 0 0

wD(w, k)b+ il ]=

(14.11)
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oD(w,k) / oD(w,k)

o Era detuning

where there 1s the group velocity of oscillation v, =

OD(w,k)
ow
ment of wave attenuation in the absence of a beam, normalized to the process

Increment 7, .

In a homogeneous extended waveguide, equation (14.11) is simplified
and can be represented as

is A=Re{D(,k)/7, . and @ =Im{D(w, )/ 7, PRy s the decre-
w

d . . A :
[%_ZM@]Eeexp{l%}:%;aj-Jn(a,.)-exp<—2m4,-> (14.12)

where E,explio j=e-b-J, ,(k,s-7.)/m,-cy,, N is the number of particles
simulating the beam. The equations of motion for the particles of the beam can
be represented as it follows:

. dq)c:i{eR_V_zb®+V£bz}:v® eb Jom (ks ), (@) exp(2i78 )

®dt m c c mcwy e

n nv_k
XKQ)B_OJ_2]+ Zzz},
a a

%__i{% +V?sz} :iwjn_m(k r)J(a)exp(2ing), (14.14)

(14.13)

dt  m mck mse

e ms

dv, el v iek vyb - .
g {— g’bR}: mck:s =J o (kpsr.)J  (a)exp(2ing ). (14.15)

If to come to dimensionless quantities and use the value of the integral
phase ¢ , the system of equations for real variables can be written as (see, for

example, [14-7])

dE, LY . .
T +0,-E,=N 1-;aj-Jn(aj)-Sln(ZnC+(pe), (14.16))

d Y .
TPe A, =EN)"Na,-J,(a,) Cos2ns, +9,) 14.17
dt = ( )

The equations of motion of electrons in the field of this wave in the
presence of a constant magnetic field are as it follows

dg, n?
2m dt =nN; +nEe -Jn(al-)-{l—a—iz]-Cos(ZnCi +(Pe)9 (1418)

dvn,/dv=-R,-E,-a;-J,(&)-Sin(2nC, +¢,), (14.19)
da;/dt=-n-E,-J,(a,)-Sin(2ng; +9,) , (14.20)
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where T = v ¢,
yg=4ez-0)B-Nb0-[me-c-k,%s-rW-J,fl(xms)-(l—mz/x,fw)-Dm]_l-Ji_n(kms-rC),

D, =0D/ow=0{[w* —(k? +k2 )]/ [’ —kzzcz]}/803|D:0,

R =k -0y ki Yes Be =€-b- T, (ks 1) [ -
n=(k.-v,—o+n-wg)/v,, a=kyry =kyve | ©p, 0p=eB/mec, N,  is the

number of particles of the unperturbed beam per unit length. Here b is the wave
amplitude.

However, the modes under discussion describe the interaction of an
integral, common field with particles, and the particles themselves do not directly
interact with each other.

The situation changes if it is necessary to summarize the radiation fields
of each particle, with that particles can interact with each other due to the
influence of radiated fields. This process refers to the mode of superradiation
of the oscillator system.

The case of radiation of an individual particle (from the total number equal

to IV ) should be considered somewhat differently. The equation for the field emit-
ted by an individual particle B, =e-b,-J,,,,,(k,,7-)/m,-c-y,, can be written as

oB. a,
J=iﬁ’Jn(aj)exp{—Zﬁié’j}exp{—ikzzj}-§(z—zj), (14.21)

v

¢ 0z
or
P 28-z)
—=A-0(z-z,
. Oz /
where A=i N\i J (a expi—2mi¢' fexp{—ik.z;}, solution of which, generally

g
speaking, is B =C+4-0(z—z,) where C 1s a constant that should be determined.

Since for the wave emitted by the oscillator the equation D(w,k)=0 1is true,
2

whose roots are k,,=+ReD(1+iImD/ReD) zi(%—kj)”z(HiO), then for the
C
wave, propagating in the direction z>z;, the wave number is k.=k >0 and

constant value C should be chosen equal to zero in order to avoid unlimited

growth of the field at infinity. For a wave, propagating in the direction
kz Z kZZ .
BE = 7; , the wave number is k, =k_, <0, and constant value should

be chosen equal to — A4 for the same reason. The field amplitude in this case is

B,(5)=i - J,(a,)exp{-27i{ }exp{27i(§ — &} UG~ &)+

NV
+exp{—27i(&—¢&,}-U(S;, 9]

f (14.22)
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where U(z)=1 at z>0 and U(z)=0 at z <0 . Let us draw attention to the

fact that the direction of the intensity vector of the longitudinal component
of the magnetic field in this case does not depend on the direction of wave
propagation. This is due to the suppression of the intrinsic magnetic field
of a rotating electron by radiation of waves in both directions.

Obviously, the equation for the field of the system of oscillators can be
written as

B(S) _ZZN._QZa 2(a;)exp{=27i¢ } [exp27i(§ —&;}-U(E &)+
+expi—27i(c —¢;}-U(g; —¢)]

where 3=2V N,,/M=2v,/d-}, is the ratio of the maximum increment O to the
decrement of attenuation due to radiation from the ends of the system v, /d.

(14.23)

It is important to note that in such designations the ratio of the wave
energy at the length of the system & =27xk_d to the particle energy is proportio-

Su N
nal to the value J’ | B(&) |2d§/iz a’ s and since the ratio of the energy radiated
N — 1

0
from the system to the total field energy during the time 1/ ¢ in the system is
equal to &, the efficiency of the system (if a unit of time is chosen 1/ )

proportional to the value 95— I | B(&) PdE | — Z a, . The equations of
M 0
motion are then transformed as it follows

<—>® —(—)—Re[e V2b®+v—@b} ()
m, c c

) [0 | o)

Wy a

xRebexp(2ir) =nv,, [l —n—z}fn (a,)Reexp(2in;)- B(&);
a

kms e(a)_ kZ VZ )

@0 mck

k. . dv, ! . s
e L I (k) ) Reiberp(2i") -

dr @0 m

—n[%Jn_m(k,miz)] (&) Reiexp( 2 ) b=/, (a ) Reiexp(2in;)- BE&);

k. dv, k e{ v@b} k. lequ)lJ

Sd m| c *| Fmek " wk?2)J (@) Reibexp(2ing;) =

2
:al.(];;z—a; (ko )V, (@) Reibexp(2in ) =a,R-J () Reiexp(2i)- BE);
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: (O3S
Using the representation B(&), in order to change the phase n dd o
T

we shall obtain the expression

dCD n n 1 & ,
dr _ELI_?]J;? (ai)ﬁ;af']n (a)[Sin27(5;, =603 - UG, =63 )+

+Sin{272(¢,_ ¢, )} U, —¢ )]

Similarly, we can write the equation for 272¢ and other equations of the

system describing the process of superradiance

2n%:nl n-J,(a,)- {1—— ZNSZa (aj)[Sin{2n(§i—(;j)+

(14.24)
+2n(gi_gj)}'U((tﬁi_&')+Sln{2n(§i_C.fj)_zﬁ((t?i_gj)}-U(éj_ai)]a
da./dt=-n-J,(a)- —Za ,(a)[Cos{2nC; - )+

(14.25)
+27T(§,-—ﬁj)}'U(Ex—ﬁj)+COS{2TCQ—Cj)—zﬁ(@—ij)}'U(ﬁj—i,-)],
dn,/dt=-R,-a, J(a)—Za 2 (a)[Cos{2m(C, —C )+

N9 52 (14.26)

2mi(§; _aj)}‘U(‘ii —§1)+COS{2W(Q —Q-)—2TE(§I~ —ij)}“U(ﬁj —-&)]-

Equations (14.16) — (14.20) can be transformed (for more details see
annex XIII) into the well-known Gaponov equations, which were usually used
to describe phenomena in a vacuum waveguide.

Let us note that a detailed analysis of the behavior of particles and the
field in the gyrotron was also performed in [14-11]. The authors [14-12 were
also interested in the problems of gyrotron excitation. However, when certain
gyrotron power is exceeded, gas evolution from the structural elements and its
ionization led to the appearance of a relatively low density plasma, where the
Langmuir plasma frequency remained much lower than the operating frequency

(0>, =\/47zeznp /m,, ). The direct inclusion of plasma in the procedure for

obtaining the Gaponov equations was difficult, therefore, an analog of the
above system of equations (14.16) — (14.20) was used; it was obtained taking
into account the influence of low-density plasma. The difficulty associated with
the inability to separate waves of different polarization in magnetoactive plasma
was circumvented by using a small parameter of their coupling

g= (cozgxy /czkf) =w’e,/ c’k > <<1,

where &, =¢, =¢&, = ia)lz,ea)B / (@* —601%) is the transverse component of the
dielectric constant of cold magnetic plasma. In addition, the ratio of the
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longitudinal and transverse components of the wave vector was small. Below let
us consider the account of the influence of low-density plasma in the traditional
form [14-1] of the gyrotron equations carried out in [14-15]. Let us also discuss the
efficiency of generating a gyrotron in the presence of plasma in its volume [14-16].
In this case the system of equations takes the following form (see annex XVIII)

d’F 0 Y2 A*n

iZ +i P+7/GF— IP(1+g)<A >, (14.27)
dA 1 . * qrn-1

_+{A+ A‘ —1}A=—l(1+g)FA , (14.28)
dsg

n J —m2 k'erC
where I, = 64e] n’ ﬂzo ( n ( )
B

2
2"n 'J J 2 (x'ms)x'ms2 +J?, (x'ms )(x'ms2 - mz) ’
I,=N,,ev,, 1s initial normalized longitudinal beam  current,

2 _ - - .
PN CCntc7) S B A {2mg
n

2
nwg P,

5 512
> QBzeBO/mec*za)B(l—,BlO B0 ) ,

2 2 2
, §0° [ c” =k,

9

IBZ Z _VZO ' _
a, =a(Ss =0), §G=L2—(v%» o= rg =4 Y
z z (ﬂJ_O C‘)Bo)
2
2 a,"2ebexp(ip k... o Q2 +0,’ Q7
L (2}, ( ),TP:pPZCz/Za)G, G=( B) G

F=4 " >
2"n! CmeOﬁJ_O Wp ( W _QBZ)

N n
the averaging procedure has the form / g\ _ 1 S| 4/ 2
ging p <A >_N,~Z[aﬂ)} oxp( -2 )-
It can be shown that the account of the presence of plasma results in
a slight increase in the radiated power (see Fig. 14.1). The upper curve
corresponds to the presence of a low-density plasma in the volume of the

waveguide; the lower curve corresponds to the case of a vacuum waveguide.
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Similarly, we can write equations describing the process of superradiance
in the gyrotron system. The equations of motion for a spatial problem can be
represented as

2ﬁdé’i:(n a)) nay,
dz v

z

[,Bm :Bi] —(1__)J ( )Jn(al.)Rebexp(Ziﬂé:.)=

(na)BO ) na)B

Yy VAl —(1—%1&(ai)Reexp(Mé)'B;

z z i

k.r)J (a)Reibexp(2in¢) =" T, (a)Reiexp(2inl)- B
A%

z

da en (
dz mey,

Here let us not take into account the change in a very slow longitudinal
velocity in phase relations The origin of the first terms is easy to understand,

noting that @,, = (1 ~f,/2), then @, =, [1+(B,—5)/2].

eO
Assuming the arguments of the Bessel functions to be small

1 1
J,(x) = (x/ 2)"(;)# L (x) = ;(X /2)", let us transform the previous equations

as it follows

d@,/m) _ oo gy o U4l )" & 4,
“ac =iA+i(|A] -1)-G ]Z,( )"-Sin{27(&; - ¢ ;) + ’ (14.29)
+270(&, =8} U(E =),

d|4]_ |A|/2
dz, Z( ) Cos(2(6; - 208 (14.30)

+H27(c =6} U(f—ffj),
where the following values are used: ®; =47e’N,, /Sm, is the volume-
average Langmuir particle frequency of the beam, § = 72'7;,2, 1s the waveguide
, Bi=(v,/c),

2(w —nwg,)

P
nwg, - P,

cross section, Z =&, =0 fi,z/2v., A=

_ a)an Jm n(kms’”c)azn 1
47ply -T2 (x,,) (xh —m®)- D, * A= explic, S

These two equations can be written in a complex form

a4, ALY Z('A Y expl27(¢,—¢ )+

L= iA+i(| AF ~1)}4 - G4, (
d¢, N (14.31)

+277(§_§/)}'U(§_§j)-
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SECTION 15.
EQUATIONS, THAT DESCRIBE EXCITATION OF TM WAVES

Let us obtain a system of nonlinear equations that describes the excitation
by an electron beam of a TM wave in a cylindrical smooth metal waveguide of
radius 7. The dispersion equation, which describes the dependence of the

wave frequency w on the longitudinal and transverse wave numbers k. and &,

accordingly, has the form (14.2). The components of the TM waves electro-
magnetic field can be represented as:

E, =h(z,t)J,,(k r)exp(—iot +ik,z +imb), (15.1)
3 m B wm .
<E9’Br)_{(l—a)2/czkzz)kzr’ (1—w2/czkzz)crk22} ’ (15.2)

h(z,t)J,, (k,r)exp(—iot +ik,z +imb),
(E..By)={=ik../ (1-&? | PRk, =ik, | (1~ /czkf)ckf} :

| (15.3)
h(z,t)J ,(k,r)exp(—iet +ik,z +imb),

where £ 1s the complex amplitude of the wave, whereas other notations are the
same. The transverse wave number k =k _=X /7, is determined from the
requirement that the tangential field components vanish at the boundary of the
waveguide, and x,,, is the s-root of the equation J,,(x,,;) = 0.

Let, just as in the previous case, an electron beam occupy a cylindrical layer
in the section of the waveguide, with all centers of Larmor electron rotation being
at the same distance from the axis of the waveguide. When passing to a coordinate
system the center of which coincides with the center of rotation of an individual
electron in the beam, we use relations (14.6), where b, and B, should be replaced
by e. and E., respectively. The values of the components of the electromagnetic
field in the coordinate system of the rotation of a single electron have the form:
(€.€05DR) =1 T (Kypste ) s (Ko ) €XD(—ic0H + ik, 2+ im® +iq®D, +imm | 2)x

q (15.4)
x(L(m+q)/ (1-a* | gk, ,~(m+q) | (1- 0 | 2 YeZersg )
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(e ) = hZJ (Kos )T g (Kons?s ) XD (it + ik 2 +im® +iqD,, +izm | 2) x
(15.5)
x[—z ms/(l—wz/c2k2)k —ik, w/(1- a)2/c2k2)k2}
Since @, = &y + wpt, ® = Py + wpt,z =zy + v, t, then in the case
of resonance of the beam particles with the wave w-kv,=nwy,, the relation

m + g = n 1s satisfied in both expressions (15.3) and (15.4), as in the previous
section, we hold only the resonant terms:

. n o n
(€050 =T,y (Ko ]%)J"(a)exp(zmé’){l’(l—a)z/czkzz)erZ’_(l—a)z/czkzz)kfch]’ (15.6)

. ke ke
(€6t ) =il )eXp(zmé){_(l—a)zl/czkf)kz’_(l—a);/czal)cf)kzzcb}’ (157

where the notation from the previous section is used. It can be shown that the
equation for the wave field takes the form

6D(w,k) oh  dD(w,k) oh
dw ot ok oz

= 4i[rw2h*J'm2 (xms )}_1 Trdrzf d@jE*,
0 0

wD(w, k)h+ | ]=

(15.8)

§ _ 0D(w,k) /aD(a),ié)
& ok oo

group vibration velocity is detuning is

A=Re{D(w,k)/y, %} and decrement of wave attenuation in the absence
of a beam is @ = Im{D(w,k)/, 8Déc;)),k)} :

In a homogeneous extended waveguide, equation (15.8) is simplified and
can be represented as

[dir—m +O]E, exp{ip,} = %JZ]Z; J,(a;)-exp(=27ic ;) (15.9)

where N is the number of particles, simulating the beam. Passing to dimensionless
quantities and using the value of the integral phase ¢ , the system of equations
for real variables can be written in the following form (see, for example,
[14-7, 15-2]):

dE g &
Tt 0-E, =N3> a;-d,(a;)-Cos(2nl +0,), (15.10)
j=1

d B :
%—A=—(EhN) ' T (a;)-Sin(2nC ; +¢,) (15.11)
j=1
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The equations of motion of electrons in the field of this wave in the
presence of a constant magnetic field are as it follows

dc. . :
2l =, +nE, (@) Sin(AL, +9,) (15.12)
dn,/dt=-R,-E, -J,(a;)-Cos(2rnl; +¢,), (15.13)
da;/dt=—(n/a)-E,-J,(a;)-Cos(2nl; +¢,), (15.14)

where T=Y,f, v, =40y Ny [m, -1, (%) DI Ui 1 KZ00g)- T (Ko - 70),s
D, =6D/60)=8{[032—(kzz+k,ﬁs)cz]/[0)2—kzzcz]}/éo)b):o, R =kZ-wy/kyiv,,
p=ehJ (ks 1) (g [ heop) my -y, n=(k,-v,—o+n-0y)/y,,

a kas =KV / Wg, @y =eB/m,c, N,, is the number of particles of the

unperturbed beam per unit length. Here £ s the wave amplitude.

It turns out that for linear oscillators that do not move in the direction of
wave propagation, under the following conditions: n=1, =0, A=0,
P>, y o 2rl+n/2, R0 atsmalla; (J(a), 0> a/2, Jy(@), o1

J'\(a), ,—>1/2) and using known ratios Sina=-Cos(a+7/2),

Cosa=+Sin(a+r/2) the systems of equations for TE and TM waves

(14.16) — (14.20) and (15.10) — (15.14) practically coincide (For the integrals of
the systems of equations, see annex XIX).

Excitation of a longitudinal wave in a magnetically active plasma
waveguide. Let us note that in case of substitution ¢, — ¢, + /2, equations
(15.10) — (15.16) are reduced to the same system of equations considered in
[15-1, 15-2], which describes the excitation of a longitudinal wave in a plasma
waveguide, where the dispersion equation takes the form

D(w,k) =kk;e,;(0,k) (15.15)
where there 1s the dielectric constant tensor of cold plasma
~ &, &, 0 )
gj(.k)=18) &, 0 and its components &;,=¢,, =1- L,
0 0 ey 0? - coB
2
€33 = €5 :1—0)—1’;, €, =—€,, =I€, =M, 033/0)(0) — 0y )

In this case, the expressions for dimensionless variables and parameters
are slightly different:
wzk? oD 12 g = ek, @ . .
Y, =0, 5= k2 Fry Ip_o] P ma ® is the amplitude of the

longitudinal wave potential. In [15-2], (see also [15-3, 15-4]) for the conditions
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of the anomalous Doppler effect, that is n=—1, the dependences of the amplitude
and phase of the field, the average beam velocity 1, of the average scatter on
time Aa for values R =1,0;0,05 are found. For small R =0,05, the process
is delayed, when the field maximum is reached, when the transverse velocities of
almost all beam particles reach the values vq, = ®,x_;, / k,,, where x ;, is the
first root of the equation J ,(x ,,)=0. That is, as it turned out, the transverse

inhomogeneity of the field, the characteristic size of which is comparable with the
value of the Larmor radius significantly affects the dynamics of instability.

N0 wNN Y

Fig. 15.1. The amplitude and phase of the field,
the average beam velocity 7 , and the average time spread Aa

for the values R =1,0;0,05 [15-2]
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CHAPTER 7.
Modulation instability and self-similar structures

The development of modulation instability of a wave of finite
amplitude under conditions of a high level of absorption of wave
energy in the medium is considered. A modified S-theory is used to
describe these modes; it takes into account the resonant interactions
of disturbances with the main wave and the interactions of these
disturbances. It is shown that in these modes, the appearance of long-
lived states of a modulated wave with linear spectra is possible,
which are the cause of the development of the following instability
cascades. As a result, a self-similar spatial wave structure can be
formed at different scales, which was confirmed by the results of
numerical modeling.

SECTION 16.
MODULATION INSTABILITY

The authors of [16-1 — 16-4] found that periodic waves of finite amplitude
in media with the most common form of local cubic nonlinearity are unstable in
case of excitation of two side spectra of stimulated perturbations, respectively,
with a larger and shorter wavelength. The development of such an instability
results in amplitude and phase modulation of the initial wave. Subsequently this
determined the name of this type of instability — modulation [16-5]. In multidi-
mensional cases, in addition to modulation instabilities, self-focusing processes
are also possible [16-6].

A remarkable property of modulation instability near the threshold turned
out to be its ability to create self-similar structures [16-7, 16-8]. Indeed, under the
conditions of a balance between the mechanisms of generation of the main wave
and the levels of absorption of wave energy, the development of modulation
instability leads to the formation of stationary self-similar structures, the spatial
scales and intensity of which are due to nonlinear resonant interaction between the
main wave and the excited side satellites wave and the excited side satellites.

Fig. 16.1. Increment of the main
wave (periodic structure),
2 - increment of modulation instability

of an already developed main wave /\

(periodic structure) 7 7 & — 1
0

The interaction of the disturbance pairs (k=k,+Ak) arising as a result of

the instability associated with the resonant conditions, is weakened under these
conditions; they interact to a greater extent with the main wave, and their effect
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on the main wave is integral. That is why we can assume that such a system
near the threshold of modulation instability can be defined as quasilinear [16-9].

In [16-8, 16-10], two main features of modulation instabilities in media and
systems with a high level of energy absorption were noted. Firstly, in the mode
of saturation of modulation instability, narrow spectra of lateral disturbances are
formed as a result of the mode competition mechanisms discussed below, and in
the limit of large times, the developed spatial structure acquires a characteristic
linear spectrum. Secondly, it was theoretically predicted that the formation of
a line spectrum facilitates the fulfillment of conditions for the next, already
secondary modulation instability, which is developed in the framework of
such scenario [16-11]. Moreover, the wave (or structure) modulated as a result
of the development of primary modulation instability should undergo modulation
due to secondary instability, but on a much larger scale [16-11, 16-12].

The results of numerical studies of such a multimode system qualitatively
confirmed the assumptions made by the authors of [16-11] and their theoretical
conclusions about the appearance of a multifractal structure of perturbations.
In addition, it was found that in the mode of saturation of instability, the
integrated energy of the spectrum stabilizes, which indicates the formation of
a long-lived quasi-stable physical state [16-13], and there remains noticeably
less energy of the main wave.

The evolution of instabilities near the threshold can be traced using the
modified S-theory [16-10, 16-14], which allows considering in detail the evolution
of individual spectrum modes'".

Let us consider the instability of a monochromatic wave

A(x,t)-expl{iot —ikx} (16.1)
in a wave medium with weak dispersion and local cubic nonlinearity, where
A(x,t) 1s its slowly varying complex amplitude. In general, if the dispersion
0 a system is known

w=aq+p-k*+or| AP, (16.2)
then the equation for changing the complex amplitude 4 can be written as
O .« 4 0% . )
EA_M)OA z,BWA+zaA|A| , (16.3)
or in the one-dimensional case
O _. 4 :p0? . ) 16.4
~A=ioyA zﬂ$A+zaA|A| (16.4)

" In a number of works of the group by Zakharov V. E and Lvov V.S. (see the detailed review [16-15]
and the book [16-16]), relying on the inclusion of only two interaction diagrams, namely

20, =w(k)+ o(-k), ak)+w(—k)=ak')+w(-k'), where @), is the frequency of the main

wave, authors formulated approaches to describe the nonlinear stage of modulation instability,
which subsequently received name of S-theory.
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A similar dispersion is characteristic of Langmuir waves in plasma and
oscillations in a plasma waveguide in the corresponding normalization

w=a,+k>—| AP. (16.5)
Lighthill criterion [16-1] 1s accomplished 1n this case
(0’w/0k?*) 1 -0w(|A]?)/ 0| AP<0, (16.6)
according to which the wave (modulation) is unstable in the direction of its
propagation.'
Below let us consider the case of a balanced source and sink (distributed
output, absorption, or dissipation) of wave energy. The Lighthill equation,

describing the slow evolution of the envelope of oscillations under these
conditions takes the form

0A_ o, .0%4 2
VT 0A lax iA|A|]- +g, (16.7)

where O is the absorption decrement and g is the external source of wave

energy. The amplitude A(?,x) of oscillations slowly varying with time can be
represented as
=u,(t)exp {z¢k (1) —ikyx}+ > u,(t)exp {l¢k (t)—ik,x} =
n#0
: 16.8
= {uy () + X, u(Oexplitd, —, )ik, —k)ljexp fig, (0-ikyx}. 1O
n#0
That 1s, instability is considered as the excitation of the perturbation
spectrum Zun(t)-exp {o, (©)}-explayt—ikx}, where u,(7)-explig, (1)} is the
slowly Varying complex amplitude of the n-th mode of the spectrum. The real
field is a modulated wave at a frequency .

Therefore, in order to restore the form of the wave field, expression (16.8)
should be multiplied by exp{igt}. Selecting the “fast” phase factor

explioyt —ikyx} corresponding to the main wave, in this case we shall obtain
the oscillation field as the product

A=expliot —ikyx}-{u,exp| ¢k + ) upexplig, —i(k,—ky)xl,  (16.9)

n#0
where exp {iw,t —ik,x} is the rapidly changing phase.
Often, a slightly different type of field representation is used, highlighting
the full phase of the main wave exp {iw,t - ik, x+i¢k }

A=explioyt—ik x+z¢k} {uy+ D u,expli(g, ¢k) i(k, =k )x]}.  (16.10)

n=0

12 Generally speaking, if da(| AF')/d| Af<0, then self-focusing effects are possible [16-17].
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In the case of modulation instability of a monochromatic wave of large
amplitude, we are talking only about one wave, which is characterized by the

phase vf:a)/ k and the group v, =0w/0k velocities. In a reference frame

moving with a group velocity of a wave the equation, which describes the
behavior of the envelope of the wave field that occurs when a wave is
modulated with an initial complex amplitude U, at small perturbation

amplitudes |u, [<<|u, | takes the form
Ouy, O%uy . e
Py +5uk1’2 +1?2’+1{[ukl’2 | u, | +uk2,]u0} =0, (16.11)

where O is the absorption decrement at selected time scales T and coordi-

nates é/ . It is not difficult to see that the interaction of two perturbations u,
1

and uzz occurs with the drag stream proportional to |u, > and the second

harmonic of the wave which is proportional to |, 7.

The last term on the right-hand side of (16.11) in braces shows that the
spatial modes"> with wave vectors satisfying the spatiotemporal synchronism

2ky =k +k,, (where k=k,+K, k,=k,—K, k >>/K|.) interact most effectively,
at least at the stage of modulation instability, which is linear in perturbations
(=T

Let us write a system of interacting modes and obtain the equation for u;;

using the complex conjugate equation (16.11), where we substitute the indices

2
oy S Ty 2 4l u2y =0 16.12
Py + ukl,2+184’2 +z{[uk1|u0| +uk2u0}— , (16.12)
% 2 *
O, +Su, —ié—u’;—i{[u,’: luy |* +u, u} =0. (16.13)
ot Ve 2 !

Assuming the dependence on time and coordinate in the form
exp{—-iQ 7 +iK}, we can represent the dispersion equation of the process

DIQK) =(Q+i5+ K~ uy P )Q+i0 —K>+| 1y [P+ 4, =0, (16.14)

whence we can see that the absolute instability in the reference frame, which
moves with a group wave velocity relative to the laboratory one, has an
increment equal to

13 1t is important to note that disturbances with wave numbers kl and k , are not the waves of the

system, that is, they are not able to exist in this medium independently without the support
of a wave with a wave number £, .
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mQ=-6+K*-2K?|u,, (16.15)

with the maximum increment
2
ﬂmQ)W =—0+]| Uy | ,

disturbances grow, their wave number is K* =K; =|u, [*.

The width of the spectrum determines the localization of this modulation.

The value (K,—08)=2x/L corresponds to the modulation localization region L.

The position of the maximum increment determines the average spatial period
T of the modulation, thatis K, =27 /T .
Instability threshold is not difficult to determine

|ty =" (16.16)
Let us write the envelope (modulation) of the field in the form
a = {u,expligy]+ > u,explig, — iK1}, (16.17)
n#0

where ¢, =¢,(K,), Y, =u,(K ), and for the wave vector in the region of linear
instability, the expression is K> =1+ (W)\/l -0 .

Taking into account the terms, which are non-linear in amplitude pertur-
bations, the equations for the fundamental mode and the modes of unstable
spectra can be represented as it follows

d¢0——u 2 9% (U +u_?)—2 3 UpyU_pCOSD
7_ 0 Z m —-m Z m*—m m» (16°18)
m>0 m>0
N
uy=—g{~=0 -2 uyu_,sin®,,}, (16.19)
m>0
du, _ U_, .
T ={-0+u; i sin®,u,,, (16.20)
do, u_, ul 1
S cos®, = 2ui + > (uy? +up’)=5uil (1621)

m>0

Origins of instability. At the beginning of the development of the process, when
all phases of the initial perturbations are randomly distributed (and especially near
the instability threshold), the rate of change of the mode amplitudes is much lower
than the rate of change of their phases. Therefore, we can assume that the left side
of equation (16.21) is always small. Thus, we can find the value of a steady or

stable phase @, * for each pair of disturbances, interacting with the main wave,
which is determined from the expression.

cos(®*,)~ (2K2 —2ul)/ul[ 2z 4 Ly,
u u

m -—m
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From equation (15.23) it follows that for 0 = 0 stable phases of
growing modes are in the interval 0<CDn*<7Z, the maximum increment

corresponds to the value @, =7 /2. When K,>u,, we have @, <7 /2,
and when K, <u,, on the contrary CI)T1 > v / 2 . As the absorption level &
increases, the interval CD; narrows. Actually, upon reaching this stable phase

value @, — @ the growth of perturbations begins.

The consideration of the most effective interactions that occur only
between spectrum-symmetric modes with respect to pumping (kg +k ¢ =k, +k_,)

according to the modified S-theory leads to the following equations

dv
S = V_s V_s
=V =0 +uf b sin® , +2 v nzisu u_psin¥ ¢ 1, (16.22)

dgg 1> 2,32 2
dtS = K5 —2(u; +35 +2;u )—us VSS cosD, 2—“;14 u_,cos¥,,, (16.23)
to which the first two equations of the system (16.21) — (16.24) should be
added. The notation W, =®,—®, is used above. Here, for the convenience of

analysis, we used the notation of the amplitudes of the spectrum modes v, =/
with wave numbers k. In the developed instability stage, this system of

equations can describe not only the processes of energy exchange between
spectrum modes, but also the development of a cascade of modulation instabilities,
the result of which may be the formation of a fractal disturbance spectrum.
Modeling a process at high absorption levels. The numerical solution of the
above system of differential equations (16.21) — (16.24) demonstrates the
excitation of the instability spectrum on both sides of the main wave [16-9]. As the
instability spectrum is excited, modulation of the fundamental mode is observed.
Below there are the results of numerical modeling carried out at different levels of
suprathreshold 1—0, considered as the degree of distance from the instability
threshold (15.16). The number of modes N is taken equal to 100. At the level of
suprathreshold u,,—8=0,2, or, which is the same, the decrement of absorption

is 0=0,8 (because u,,=

At the initial values, one main mode is observed, and as a result of nonlinear
interaction, a slow but accelerating growth of the instability spectrum begins.
The amplitudes of the instability modes are small at this stage; therefore, they
have no significant effect on the main wave.

Moreover the level of spectral imperfection of the structure

,(t=0)=1), the experimental result is as it follows.

D = _Z u?2 and the level of spectrum intensity /g=2)" u2, are small, and
u() m>0 m>0

the intensity of the main wave /; :ug 1s close to unity.
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Then, the time derivative
of the amplitudes of the
instability spectrum of the
instability spectrum reaches its
maximum, a spectrum of exci-
ted modes 1s quickly formed,
which reach values sufficient
to effectively affect the main
wave (Fig. 16.2 — 16.3). At this
stage, the spectrum is wide, the
amplitude of the excited modes
is 1-5% of the amplitude
of the fundamental, but their
interaction leads to deviations
of the form of the funda-
mental ave by 15-20% of
the regular sinusoidal shape.
In this process, there is an
increase in the level of
defectiveness D.

At the next stage of
the development of process (
t>100), a narrowing of
the spectrum of modulation
instability is observed with
a simultaneous increase in the
amplitude of the excited mo-
des (Fig. 16.4). The derivative
of the extreme modes of the
spectrum takes a negative
value, the maximum of the
spectrum shifts toward the
main mode. Further, the rate
of change of the amplitude
of the excited modes
decreases, and the system
reaches a quasistable state. An
increase in the amplitude of
the excited modes leads to a
more noticeable effect on the
fundamental wave (Fig. 16.5).
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Integral and local characteristics of the process of instability. Let us
consider in detail the process of spectrum formation and the transition of the
system to the quasilinear stage in terms of mode intensity. As it can be seen from
Fig. 16.6 and 16.7, the intensity of the fundamental mode at the initial stages

of the process noticeably decreases and approaches the value ¢ when ¢ ~100,
The levels of suprathreshold (1—0) limit the intensity of the main mode from

below. During a decrease in the intensity of the fundamental mode, the intensity
of the spectrum of excited modes begins to increase, also approaching the upper

boundary, the value of which depends on the parameter O .

Iy,
[6=09] [6=0g
1 [ Fig. 16.6.
R B W Intensity of the
06 4--nmmmm : Jfundamental mode
gt dnn e Iy =ug
at the linear stage
e of the process
il ; : ;
0 0 100 1350 200 t
Fig. 16.7. Total
intensity of the
spectrum of the
excited modes
I :ZZui
m>0
at the linear stage
of the process

1] a0 100 140 200

In this case, total intensity does not exceed unity (Fig. 16.8), and with the
development of instability it decreases, being limited from below to values that
depend on the parameters.
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SECTION 17.
FORMATION OF A SELF-SIMILAR FIELD STRUCTURE

A numerical analysis of the model showed that near the instability threshold
(16.16), i.e. when O <1, the intensity of the fundamental mode at the initial stages
of the process noticeably decreases and approaches the value & when ¢ ~ 100 .

As the amplitude of the main mode decreases, the spectrum of excited modes
begins to grow, also approaching the upper boundary, the value of which depends

on the parameter 0. The modes of the spectrum do not directly interact with each
other (or this interaction is very small); they interact only with the main wave.

Such a quasilinear instability stage manifests itself under conditions, when
the integral characteristics of the process practically do not change. In the
developed stage of insta-
bility, the changes in the
amplitudes of the spectrum
modes sharply decrease.

The constant value of
the total intensity of the
system of spectrum modes,
with a slow change in its
. . . internal structure at the quasi-
i 50 100 150 0 linear stage of the process,
allows talking about the
formation of a quasi-stable
long-lived physical state.

It i1s important to note that the monotonic decrease in the number
of spectrum modes that is observed at the quasilinear stage of the evolution
of such a state actually corresponds to a decrease in excited degrees of freedom
up to several ones (here it is the number of spectrum modes Ny, see Fig. 17.1).

Ne 100
90
e +---

70 +--

60 +--f-4-2
50 +--
a0 +-
30 +-4t-
0 +-
10 +-H
0

Fig. 17.1. Change in the number
of excited modes of the instability spectrum N
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The formation of long-lived quasi-stable states. In the developed instability
regime, a further change in the intensity of both the wave and the spectrum does
not occur. We can assume that the nonlinear, or rather the quasilinear instability
stage manifests itself under conditions when the integral characteristics of the
process practically do not change.

Fig. 17.1 shows that at the initial stage a set of modes is excited;
it consists of more than 70 % of the modes of the initial spectrum, and the
maximum number of modes is excited in the region of transition to the
quasilinear stage. A mode was considered excited if its amplitude exceeded
0.1 % of the initial level of the main mode. The rate of change of the mode
amplitude decreases over time, but continues to be significant. As a result
of competition, the amplitude of the modes at the periphery of the spectrum
decreases almost to zero, and the amplitude of a part of the modes in the
center of the spectrum increases.

Thus, at the quasilinear stage, the whole spectrum narrows, the number
of degrees of freedom (excited modes) decreases, that is, we can talk about
a decrease in the values of characteristic quantities associated with the entropy
of the system as a whole. The time derivative of the amplitudes of the peripheral
modes of the spectra assumes a negative value, the spectra as a whole shift
toward the wave number of the fundamental mode. Further, the rate of change
in the amplitude of the excited modes decreases, and the system enters the
quasilinear instability regime.

When the instability threshold is slightly exceeded, the integral indices
behave similarly to the corresponding indices of the simple model, which confirms
the validity of the previous assumptions concerning the possibility to neglect
the interaction of modes within the spectrum when the instability threshold
is slightly exceeded, and it also estimates the applicability boundary of the
simple model 0 =0,7 .

The occurence of self-similar field structures. This behavior of the
instability spectrum made it possible to construct a theory of the formation
of a fractal structure. Using the example of a modulation unstable wave, let
us discuss the nature of the formation of a cascade of instabilities.

The modulation instability of a monochromatic wave considered in the
previous section forms a new state — a modulated wave, which, as it follows
from the discussion below [17-1 — 17-3], in its turn is unstable. Let us note that
the modulation instability of a large amplitude wave is possible if the maximum
increment (related to the monochromatic case) of the spectral line width is
exceeded. In addition, the formation of narrow spectral lines of instability
results in the expansion of the spatial region of modulation localization.

Let us show that as a result of secondary modulation instability, an even
larger-scale modulation of the previously modulated main wave is formed.
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To describe the secondary modulation instability, we can assume that the initial
state of the system is a line spectrum consisting of three modes formed as
a result of primary instability.

It is the formation of the line spectrum of the modulated wave upon
saturation of the primary modulation instability that creates the conditions for
exceeding the threshold of the secondary modulation instability.

As a result of secondary instability, spectra of unstable perturbations with

wave numbers equal to k = ik; arise in the vicinity of the modes + (k; +K).

As before, it can be verified that the modes with i(k;k +x) have the same

amplitude values as in absolute value. It can be shown [17-5, 17-6] that the
maximum linear increment of the secondary instability is

Voeff = —6 +[u) +4u:; 1'%~ 2“2; fuf = (ufy —8)° 1 2uf> (17.1)
where
Sin(®,, ~®,) ~—Cos®, =2 /[ +4u:]",

. 2 4 4 12
Sin® = —u; /[u, +4uk;]

b

as ch; z—ﬂ/2

For the fastest growing modes at the linear stage of development
of the secondary modulation instability (k; +K)? = u12 +2u ]f* and the shift
2

of the wave number K relative to the wave numbers of the primary insta-
bility mode &,

o /%u; Jul =k, (u}, —6) ) 2u’. (17.2)

It can be shown that, as a result of the development of secondary

instability, its spectrum narrows. In fact, modes with wave numbers +(k, +x )

are retained in the spectrum of secondary instability. The ratio of the
characteristic times of development of primary and secondary modulation
instabilities

Tiv ' Tomt = Voo ' Viefp = (ufo — )/ 2uf » (17.3)
as well as the ratio of the spatial scales of the modulation of the main wave
due to the consequences of the development of primary and secondary
instability

Ly ! Loy = (6 1) = (uiy = 5) 1 2u (17.4)

coincide. Thus, subsequent instability cascades form increasingly large-scale
structures — modulations. Such structures are scale invariant [17-4 — 17-6].
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Fig. 17.2. Formation of self-similar field structures in a numerical
experiment: k, = 3 is the wave number of the main wave,

K ,pr =0.8 is the wave number of the first-order envelope,
and AK =0.05 is the wave number of the second-order envelope

Thus, the formation of a cascade of modulation near-threshold instabilities
that form self-similar structures due to the narrowing of the spectra of each such
separate process and the creation of conditions for the development of a new,
larger-scale one is explained. In addition, narrow instability spectra of the cascade
form a self-similar spatial structure that is clearly observed on each scale.
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CHAPTER 8. Modulation instability.
Emergence of waves of anomalous amplitude

The development of modulation instability of wave motion far
from its threshold is discussed. It is shown that instability can result in
the formation of an envelope of the wave motion of anomalous
amplitude. In this case, the field intensity at the maxima of the
envelope can be an order of magnitude higher than the average
intensity of the wave motion. The dynamics of modulation instability
is analyzed in a model of practically non-decaying high-intensity
ocean waves, the mechanism of formation of waves of anomalous
amplitude is shown. The frequency of emergence of these waves
turned out to be comparable in numerical experiments when
compiling statistics both for an ensemble of many calculations and for
time in one experiment with a viewing interval exceeding the lifetime
of the anomalous waves. The results of calculations where the
formalism of S-theory is used and direct calculations of the Lighthill-
NLS equation are compared, and a qualitative agreement between
these two approaches is shown.

SECTION 18.
MODULATION INSTABILITY
FAR FROM THE THRESHOLD

If the instability threshold substantially exceeds 6 < 0,7 , model (16.21) -

(16.22), (16.25), (16.26), which takes into account the interactions between the
spectrum modes (k¢+k ¢=k,+k_,), that are symmetric with respect to

pumping, reveals qualitatively new effects in the process of developing the
instability spectrum. This is a nonmonotonic character energy exchange
between the main wave and the developing structure during modulation
instability.

Let us consider the modulation of the main wave with a noticeable excess
of the instability threshold. The consideration of the interactions between the
modes of the excited spectrum allows examining the model in the region, which
noticeably exceeds the instability threshold 6 = 0,4 .

The calculation results are shown in fig. 18.1 — fig. 18.3. In this region
of parameters, the intensity of the developed instability spectrum is higher
in comparison with the region of weak overthreshold (6 <0,7 ). If the more

intense spectrum affects the main wave more strongly, then the occurence
of more pronounced envelope bursts is possible.



PART I. Processes in nonequilibrium media

~ 113 ~

HUA A/Ao(0)
i A
j/_\_ 3
0.5 - /.\_’—— Uwmiax
———————— —Ucr
L) L) }
0 5 307 0 5 30 7

a

b

Fig. 18.1. The behavior of the amplitude of the main wave over time (a),
the maximum (solid curve) and average (dashed) amplitude of the wave
field envelope for the case 0 =0,4, the number of modes is N=200 [18-1]

When repeatedly simulating the process, it was noted that at the initial
stage of the developed modulation instability, significant spikes in the

amplitude of the main wave can occur. When
mode spectra are excited, interference effects
inevitably arise, consisting in the realization
of bursts of modulation of the wave motion
and in the occurence of significant ampl-
itudes of individual waves. The question
is whether these effects are a manifestation
of the random nature of mode interference
or they are determined (see annex XXI).

It was noted above that the behavior of
the modes of the excited spectrum is control-
led by pumping, which in this case is a wave
of large amplitude. In most cases, when such
multimode processes occur, even if the inte-
raction of unstable modes can be neglected,
the effect of pumping on each individual mode
of the instability spectrum can be large.
Therefore, interference in such cases is forced,
imposed by pumping. Randomness manifests
itself only to the extent that the phase
distribution of the modes of the instability
spectrum at the initial moment was random.

Un
A =8
0.0031

0.00154

un“
0.075 | 1=29.6

Fig. 18.2. The behavior
of the instability spectrum
for three time instants

(5=0,4 N=200) /18-1]

Under these conditions, a narrowing of the instability spectrum can also

be observed.

The dependences of the change in the energy of the mode spectrum and
the energy of the fundamental wave on time in the process of instability
development, shown in Fig. 18.3, are also of interest
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M " Fig. 18.3. Change in the energy
, St +u; of the spectrum of modes ~ Y u m2
0.51 B i s 2 m#0
V. SRS N and the energy of the main wave ~ uoz
=’ = and their sum over time
0 15 307 ¢

(6=04 N =200) [18-1]

Instability of a large-amplitude wave in the 2D Lighthill model [18-2].
Annex XIX discusses the excitation of mode spectra with a wave vector,
which form a nonzero angle with the wave vector of the fundamental wave.
The process of excitation of the two-dimensional instability spectrum (shown
in Fig. 18.4) forms the instability spectrum at the initial stage of develop-
ment — wide, with small (x; <0,05) mode amplitudes. In the process of

development, the spectrum narrows, while the amplitude of the excited
modes increases (Fig. 18.4b)

Fig. 18.4. The two-dimensional instability spectrum
of a quasimonochromatic wave [18-1]

As a result of numerical modeling, three-dimensional patterns of the field
envelope are obtained for the parameter values N =100 and 6 =0,5,

at =15, Fig. 18.5a shows a small-scale picture of the envelope of the main
wave, Fig. 18.5b illustrates bursts of the field envelope on a larger scale.
Three-dimensional visualization of this wave field is presented in Fig. 18.6.

- T |‘|||||
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([ AL ;fi
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Fig. 18.5. Two-dimensional modulation of the main wave:
a) small-scale representation, b) fragment [18-1]
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We can make sure that taking even a small angle between wave fronts
slightly increases the amplitudes of large waves, which was repeatedly noted
by different authors.

n

Fig. 18.6. Three-dimensional visualization of the envelope field,
built on the basis of a height map (Fig. 18.5) [18-1]

Comparison of 1D Lighthill models in cases of applying S-theory (16-21) —
(16.22), (16.25), (16.26) and direct calculation of equation (16.7). Near the
instability threshold, the characteristics of the modulation process of the
fundamental wave in two cases of applying the S-theory and the NLSE (Nonlinear
Schrodinger Equation) are practically unchanged. Figure 18.7 shows the time

dependences of the change in the energy of the mode spectrum )’ un? and the

m#0
energy of the fundamental wave u02 in the process of instability development.
A A
l T 2 2 l u,
xi“’ +Uo quﬁ Ui
0.51 sy us
== oI
" = — ' = =
0 15 30 ¢ 0 15 30 ¢
a b

Fig. 18.7. Change in the energy of the spectrum of modes » u,’ and the

m=0

energy of the fundamental wave and their sum u,* over time for the cases

of applying S-theory (a) and NLSE (b) foro =0,7, N=200 [18-1]

In case of applying S-theory (a), the average amplitude of the waves and
the maximum amplitude of the wave envelope are somewhat smaller than when
described by the nonlinear Lighthill-Schrédinger equation with this type
of dispersion term (b). This dynamics is presented in fig. 18.8.
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Fig. 18.8. Maximum (solid curve) and average (dashed)
amplitudes of the wave field envelope for applications

of the S-theory (a) and NLSE (b) for 0 =0,7, N=200 [18-1]

Instability mode far from the threshold. Several more differences in the
development of instability at low absorption levels, are far from the threshold.
Thus, the characteristic time of modulation of the amplitude of the fundamental
wave at the absorption level, taking into account all types of mode interactions,
becomes less regular. The dependences of the energy of the mode spectrum

2
Zum and the energy of the fundamental wave on time ué in the process
m=0

of instability development are presented in Fig. 18.9. The oscillatory nature
of the energy exchange between the fundamental wave and the spectrum
of unstable modes is already clearly visible.
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Fig. 18.9. The behavior of the amplitude of the main wave over time for
cases of applying S-theory (a) and NLSE (b) for 0=0,1 and N=200 [18-1]

Fig. 18.10. The dependences of the energy of the mode spectrum,
the energy of the fundamental wave, and their sum on time for the cases

of applying S-theory (a) and NLSE (b) when 0=0,1 and N=200 [18-1]
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The envelope amplitude maxima in both cases are reached almost
at the same time and are approximately equal to each other, which can be seen
in Fig. 18.11. It is important to note that the local energy density at the envelope
maxima can be an order of magnitude higher than the average energy density
of the modulated wave.
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Fig. 18. 11.Maximum (solid curve) and average (dashed)
amplitudes of the wave field envelope for applications of S-theory (a)
and NLSE (b) when 6 = 0,1 and N =200 [18-1]

The behavior of the instability spectrum also changes. In the case of the
description in the framework of the S-theory (a), the two-humped spectrum
characteristic of modulation instability narrows, while in the more general
description (b) the opposite tendency to expansion is observed. The time for
considering the spectrum was chosen at the process stage linear in the
amplitudes of perturbations, at the moment of reaching the maximum amplitude
of the wave field envelope and at the stage of developed instability (Fig. 18.12).

Under conditions of weak absorption, the energy of the spectrum of
modulation instability reaches values comparable to the initial energy of a wave
of finite amplitude. As we can see in fig. 18.11, at the initial stage of the
nonlinear process mode, the occurence of waves and bursts of the envelope
with a very large amplitude is possible.

Subsequently, the amplitude of the main wave decreases (see Fig. 18.12)
and its influence on the interference of the spectrum modes is weakened and
their (bursts) amplitude significantly decreases.

The character of the modulation of the main wave in space (a fragment
near a region with a maximum envelope amplitude) for the same instants
of time for these two cases of instability description, is shown in Fig. 18.13.
Thus, the S-theory created by the authors of [18-3, 18-4] and modified in
[18-1], 18-5] allows a fairly accurate description of the initial stage of the
nonlinear regime of the modulation instability process in the Lighthill — NLSE
model, which provides the opportunity to quantify the maximum amplitude of
the envelope of the wave field, the time of occurence of the maximum of the
envelope, and the energy concentrated in the disturbance spectrum.
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Fig. 18.12. Instability spectra for three time instants in the case
of the description in the framework of S-theory (a) and for the description

based on the NLSE (b) for 6 =0,1 and N =200 [18-1]
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Fig. 18.13. The main wave modulation for three time instants in the case
of the description in the framework of S-theory (a) and for the description
based on the NLSE (b) for 6 =0,1 and N =200 [18-1]
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It 1s worth paying attention to the fact that in the one-dimensional case, at
low absorption levels, the maximum amplitude of the anomalous wave can be
approximately three times higher than the average wave amplitude. In the two-
dimensional case, for a converging wave, the maximum envelope amplitude can
be noticeably larger. This can be understood if we consider the change in the
width of the instability spectrum in the developed regime. Indeed, the width
of the spectrum increases, which leads to a decrease in the characteristic size
of the region of localization of the envelope. The expansion of the spectrum
developed perturbation, while conserving the energy of the wave packet, leads
to an increase in the corresponding degree of the maximum amplitude of the
spatial envelope.
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SECTION 19.
MODULATION INSTABILITY OF GRAVITATIONAL WAVES
ON WATER SURFACE

For gravitational surface waves in deep water, which are of interest for
shipping in areas with a high level of excitation of ocean waves, the following
expression is valid for the frequency of waves of large amplitude [19-1]

o=\g k-{+|AF k*/2} (19.1)
which approximately corresponds to the Lighthill-NLS equation in the form
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2
iA:z'a)-(l—l\ Al 0 124
ot 2 0x
where A4 — is the surface deviation, W 1is the wave velocity, & is the
acceleration of gravity.

The data of experimental observations and studies [19-2] indicate the
following characteristics of such waves: the maximum steepness for stable long
(gravitational) waves in deep water until they collapse (crash, are breaking) is

H/A=0.11+-0.13, where H =2| 4| 1s the "swing range " of the wave, that is, the

distance between the upper point of the wave crest and the lower trough point
of the wave, A=27/k, is the wavelength. It is important to note that waves

), (19.1a)

with a larger amplitude do not exist due to the collapse effect. In the absence

of modulation, | 4, | is the average amplitude, H=2|4,| is the average
swing range. For anomalously large waves, their swing range (steepness)
reaches (2+3)-2|4,|, and for the highest nondestructive waves, herewith

in case of high nondestructive waves such condition must be satisfied
24|
(273)7k0<0,11 0,13.

Analyzing these data, it is easy to see that the width of the spatial
spectrum of the instability under these conditions is not so small in comparison
with the wavenumber of a wave of large amplitude, as in previous models.

That is why the equation for the complex slowly varying (dependence
oc expi{—iw,t} = exp{—igk,t} is excluded here) field amplitude is represented as

2
%K =54, —i( gk, + K) gk, )4 —i\Jg(k, +K)M{\ AP A}y =
54, (5l T E) - [k iRy 7By (ot K (19.2)
°{AK[2|A0 ‘2 +2 Z |AK' |2+ ‘ AK |2]+A*_K {Aoz + Z AK 'A_K}}:

K'#K.,0 K#K,0
In the simplest case of a plane wave front, the perturbation field is written as

A, D)=y + ) [y -exp{(HKS +i(d — )} +u_ - exp{=iKS +i(f . — )},

K#0
K>0
where 4, / 4, =a, = a, |explid.} =u, explip.}, k,& = ¢ ,a=k7| 4 [,
2 2
r=t-Jgk, %, K—>K/ky, 2¢-¢.,—¢,=D,. Spectrum modes are

spaced 0<K <2K, = and —-2K,, <-K<0. K=O.3-LN, i=*(1,2,..N),

a =0.05, N=100. The initial amplitudes u, (r =0)=10" and their phases
@« (z = 0) are randomly distributed in the interval from 0—27 |
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Using this representation, let us write down a system of equations
describing the modulation instability of a large-amplitude gravitational surface
wave under conditions of strong dispersion of deep water

0| A, | (k —I—K)2
81‘K =—0| Ay |+{g(k, +K) [ A4 || 4, P sin®  +

19.3
fA Y 4 1 A 5@ -0 ) (153
K#K,0
2
% - ﬂgawo )2l R O [0y 42 3 (4 P AP
| KA (19.4)
cos(®,, \/IK\ DAL Ay | cos(@y —Dy ).

K#K,0

For a wave of large amplitude

8\A| ky?
+3| A, \+\/g7 [yl D 14 I Ay [sin(®)]=G,  (19.5)

K#K,0

%z gk, [(|A0|2+2Z\A P)+ g || A g |cos@)L (19.6)

K+#0
The interval 0< K <2K,,  can be represented as a sum of N modes in
a usual way, as before by introducing an interval in the space of wave numbers
AK=2K, /N, and moving on to the use of dimensionless quantities
K. =i-AK/kyi==(1,2,..N). Finally, the system of equations describing the
modulation instability of a large-amplitude wave takes the form

% =—Ou, +(1+K)> fu_g -uozsinCDK +2u_y ZuK u_sin(@y =D )], (19.7)
T

K>0

Here it is necessary to distinguish between modes with wave numbers K
and K respectively, phases ®, and @, , and also make a substitution

K —> K /k, ’
a@K 2[\[ 1+K) 1] (1 K)ZS {2 ZuK‘ +uK _|__ ZMK Uu KCOS(CD K)}’ (198)
r KK Uy K=K

In calculations, the decomposition of radical expressions shouldn’t
be used. The equations for the main wave can be written as

Gauo +Ouy +uy Y ugu_ sin®, =G, (19.9)
K %R0

0

8¢0 =—uy* =2 u” = ugu_ cosDy. (19.10)
K#0 K=#0
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In order to analyze the swing range of the waves (that is, the distance
between the upper point of the wave crest and the lower point of the trough),
we single out a third of the largest ones. Let us find for each point in time
in the patial interval (¢ cL=27/(AK/k,)=7zN/K, :\/2_%‘]\;/2,
is average values of swing range H =U., and average values of swing range
H=Ug,, of the third of the

largest one, as well as the largest
wave swingrange 1s H=U,,,

where { =k, x )

fﬁ\ — Umax
41 ————swr
B o

from the ensemble.

Numerical analysis of dyna-
mics and statistical indicators
using S-theory. The calculations
were performed for 600 spectrum
modes; the ratio of the absorption
decrement to the maximum incre-
ment was chosen equal to O.
Moreover, in order to normalize
the amplitude of the main waves
per unit at the initial stage of the
process, the level of external
pumping was chosen G =0.
For the model (19.7) — (19.10),
built on the basis of the S-theory,
with a decrease in absorption,

0

0 25 S0 T
Fig. 19.1. Wave swing range (distance
between the upper point of the wave crest and

the lower point of the trough) as a function

of time: average for all waves U ., , average

for the third of the largest waves U ¢, |

maximum for each time point U,,  [19-3]

25 the quantity uo2 that determines

300 350 400 450 S00 550

Fig. 19.2. A local wavefield surge exceeding

the average amplitude of the third

of the largest waves by more than 2 times

( N=300, t=10.2 ) [19-3]

the energy of the main wave

decreases, and the quantity ), u,’
m#0

that determines the energy of
the instability spectra increases.
Since the attenuation of
gravitational waves on the surface
of the ocean is small, it makes no
sense to consider cases close to the
instability threshold. Let us focus
on the case when the absorption
of wave energy is quite small:

let the ratio of the absorption decrement to the maximum increment be chosen
at the level of 0.1 (i.e. 6=0,1). The calculation results for one implementation of
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the initial conditions are shown in Fig. 19.1. First of all, it should be noted that
the criterion by which anomalously large waves are distinguished is of the form

Ui > 2Usi » (19.11)

or similar to this is ambiguous, because the largest amplitudes are observed
precisely in the initial stage of development of instability, especially with final
attenuation.

Nevertheless, waves of noticeably smaller amplitudes or ranges in the
regime of developed instability also fall under this criterion, since there
is a decrease in both medium and large wave amplitudes over time.

Fig. 19.2 shows the wave packet, i.e. the amplitude of the largest wave,
which meets the criterion (19.11).

With a decrease in the absorption level ¢ , the processes of energy
exchange between the spectrum and the main wave amplify. The shape of the
spectrum is asymmetric. It can be verified that as the amplitude of the main
wave decreases at the initial stage of instability, the maximum of the instability

increment shifts to lower values K. In this case, since the maximum of the
increment corresponds to the value of the total phase 2¢, —¢, —¢ , =P is equal

to 7/2, then consecutively the condensation of these phases (synchronization)
near this value occurs for most modes with different values K.
The fact that the integral phases of the instability spectrum @, are

concentrated near 77/2 creates the conditions for almost of the same type
of interaction of many pairs of modes with the main wave.

This collective interaction of the spectrum modes with the fundamental
wave explains the nature of the intense oscillations of the intensity of the
fundamental wave and the spectrum in the initial stage of instability. Later, the
spread of the integral phases increases and the energy exchange between the main
wave and the spectrum weakens. Due to the fact that the phases of the individual
modes ¢} retain a random distribution (in particular, there are no symmetries

O =@, and @, =—¢ ), the instability spectrum forms a different interference

structure synchronized with the main wave in each implementation.

Nevertheless, the intensity of the interference of the spectrum modes in the
initial stage is the highest'*. Considering the dynamics of the instability spectrum
in the calculations carried out in this work, we can detect the phenomenon
of a significant shift in relation to the spectral region of linear instability. This shift
1s due to a decrease in the amplitude of the main wave. In addition, it should
be noted that the amplitudes of individual modes of the spectrum remain much

'* By the way, phase synchronization due to the choice of symmetric initial phases of the interacting
modes of the spectrum of the modulation instability of the intense wave or the symmetrization of the
equations themselves, usually led to sharpened modes. The absence of phase symmetry in pairs
of teracting waves can weaken the intensity of interference bursts and shorten their lifetime.
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smaller than the amplitudes of the main wave. Let us also note the asymmetry
of the spectrum with respect to the fundamental wave, which is due to strong

A

L61

0.6 T — =
0 25 50 T

Fig. 19.3. The behavior
of the relative characteristic length
of the modulation A =2m/AK during
instability [19-3]

dispersion and a rather large increment
of modulation instability for large
amplitude waves.

From an analysis of the spectra,
itcan be seen that in the developed
instability regime under conditions of
finite absorption, the modulation length
at large times increases by almost 3.5
times. The behavior of the relative cha-
racteristic modulation length is shown
in Fig. 19.3. The dynamics of two-
dimensional wave processes is similar.

Thus, the number of waves along

the modulation length in the initial stage

m of developed instability is much smaller
1

'L’f/“A

20004

10004 ‘“
.|||‘

0
0

than in the later stages of the process.

| " Let us note that with a decrease in the
o L, — absorption level in the system, this effect
' B weakens (see below).

Analyzing the frequency of occur-
rence of anomalous waves in different
implementations of the process, we shall
' ’ find that one wave of such kind occurs

averaging conditions) at the same among the waves, which qualitatively

time 7 oc 10 [19-3] corresponds to known observations

(Fig. 19.3). Due to a noticeable absorption in the system, the occurence of waves

and bursts of the envelope with a very large amplitude is possible only at the initial
stage of the nonlinear process mode (for loss level 6 =0.1).

With the development of the process, the amplitude of the main wave
decreases and its influence on the interference of the spectrum modes is
weakened. The amplitudes of large waves, even satisfying the criterion (19.11),
also noticeably decrease

Thus, under conditions of a noticeable absorption of vibrational energy,
the occurence of abnormal waves of a very large amplitude is characteristic only
for the initial stage of developed modulation instability. With the development of
instability, the average and maximum values of waves for a given absorption
level (6 =0.1) decrease noticeably (Fig. 19.1).

However, according to the accepted criterion (19.11), even under these
conditions it is possible to distinguish anomalously large waves, although when

Fig. 19.4. The frequency of occurrence
of waves of different amplitudes V(A)
in numerical experiments for different
process realizations (under ensemble
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7 oc 30 their amplitude is already one-and-a-half to two times less than in the
most interesting case of the largest similar waves at 7 ¢ 10, Several waves are
stacked along the modulation length in the initial stage of the process, one
of which in some implementations may turn out to be anomalously large.
In the regime of developed instability, the number of waves along the modu-
lation length increases by three to four times.

Comparison of 1D models in cases of applying S-theory and a more
general description.

In real conditions, the absorption of energy of gravitational waves of large
amplitude is very small. Therefore, it will be rational to compare two description
models for a more realistic case of small absorption of ocean waves 6 =0.01
and a significant amplitude of the waves A=0.566/ N a =0.01.

Below, let us present the results of calculations that demonstrate the
development of the instability spectrum for three instants in time in the case
of description in the framework of S-theory (a) and in the general case (b).

Un Un
_ 7=5
0.003 =5 0.003
0.0015 0.0015
0 0
200 0 200 R 2200 0 200 n
Un Un
A A
0.15 0.15 —10
0.075 0.075
0: 0300 0 200 n
Ln Un
A A
0.15 =15 0.15 =15
0.075 0.075
0 0
2200 0 200 n 2200 0 200 n
a b

Fig. 19.5. The instability spectrum for three instants in time in the case
of description in the framework of S-theory (a) and in the general case (b) [19-3]

It is easy to see the formation of a characteristic two-humped spectrum
(Fig. 19.5) of modulation instability. If in the case of a description in the
framework of S-theory this shape of the spectrum is preserved, then in the general
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case of a description, the spectrum with the development of instability is smoothed
out. Fig. 18.6 shows the nature of the change in the amplitude of the main wave in
case of the S-theory description in the framework (a) and in the general case (b).

MaA
1.
0.5
L) l}
0 10 20 7T

a
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10 2007
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Fig. 19.6. The change in the amplitude of the main wave over time.
a). when described in the framework of S-theory and b). in the general case,
when all types of mode interaction in the nonlinear term of the form
| A* A are taken into account [19-3]

It can be seen that nonresonant interactions for which the S-theory
relations are not fulfilled lead to the disruption of the oscillatory behavior of the
amplitude of the main wave, which is characteristic of the resonance interaction
described by the S-theory [19-4, 19-5]. The dynamics of changes in the average

A{(&’a(ﬂ)

[ i

L

10 20
b

Fig. 19.7. Average amplitude Ucp, average
amplitude of a third of the largest modes Ug,,,,

and amplitude of the largest wave U,
of the ensemble, as a function of time.

The circles indicate the occurence of waves
of anomalous amplitude in the framework
of S-theory (a) and in the general case (b)

amplitude Ucp, average amplitude
of a third of the largest modes
Ugyy and currently maximum mo-

des U,,, 1s shown in Fig. 19.7.

The circles indicate the occurence
of waves of anomalous magni-
tude, which satisfy the relation
(19.11), thatis U,,,, > 2Ug,,, .

Distributions of the ampli-
tudes of the ranges H, i.c., the
distances between the upper point
of the wave crest and the lower
point of the trough, in the deve-
loped instability regime at one
moment and for the entire calcu-
lation time are shown in fig. 19.8
and fig. 19.9 when described
in the framework of S-theory (a)
and in the general case (b).

Waves were calculated through time instants equal to the lifetime of the
anomalously large wave". The lifetime was determined by considering the

!> Due to weak absorption, the average wave characteristics did not change.
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behavior of a wave of anomalous amplitude in a given region during some
necessary observation time. That is, averaged essentially over time, in contrast to
the case presented in fig. 19.1, where waves with different amplitudes were
estimated in numerous calculations (averaging over the ensemble of calculations).

In a numerical experiment, comparing two approaches (S-theory and
direct calculation), the nature of the distribution of the ranges is similar to that
discussed in [19-4, 19-5], where their number was calculated in different
realizations, and the values were averaged over the ensemble of realizations.
The number and distribution of the ranges of detected waves of anomalous
amplitude in these two cases are presented in Table 19.1.

Attention should be paid to the presence of pronounced “tails” of
distributions in both cases.

Np : Ny
30 301
15 151
0 0
2.6 5.2 4/40(0) 2.8 36 4/40(0)

a b

Fig. 19.8. The distribution of the amplitudes of the ranges in the observation
interval at time T =20 when described in the framework of S-theory (a)
and in the general case (b). The dashed lines define the boundary between
low amplitude modes and the third largest modes and a magnitude two times
the average of the third largest modes [19-3]

Np : Np
2400- 24001
12004 12001
et i
0 : 6 4/40(0) ° 32 64 4/40(0)

Fig. 19.9. Distribution of the amplitude of the ranges for the entire time
of calculations in the observation region when described in the framework
of S-theory (a) and in the general case (b), a) — total number of waves
is 173526, third part of largest waves is 57842, the number of waves which
are 2 times more than the average third part of the largest waves are 8, b) — the total
number of waves is 176386, third part of largest waves is 58795, the waves which
are 2 times more than the average third part of the largest waves are 10 [19-3]
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Table 19.1
Abnormal range

U, ' 2U g S theory General case
2-2.1 4 7
2.1-2.2 2 1
2,2-2.3 2 -
2,324 -
2,4-2.5 -

all 8 10

The source [19-3].

An analysis of observations and numerical experiments shows that
anomalous waves often arise in a group of waves in the form of soliton-like
A/A0(0) A/Ao(0) formations. In this: case, such

A A waves occur precisely in the

h composition of groups of
sufficiently large waves, and

[ 1 in the general case, the cha-
racteristic modulation length

’ ¢ is shorter than when descri-
f bed in the framework of

? S-theory (see Fig. 19.10).
Since the system under
a b discussion can be considered
Fig.19. 10. Characteristic form of anomalous almost conservative, because
waves in the composition of wave groups when the mechanisms of wave
described in the framework of S-theory (a) energy dissipation are very
and in the general case (b) [19-3] weak'®, the descriptions of

nonequilibrium processes under conditions of intense waves developed in [19-6 —
19-8] may turn out to be applicable to the case under consideration. However,
it should be noted that the non-stationary autowave solutions found by the
authors of [19-6 — 19-8], having a nature similar to solitons, receive energy from
an infinite medium filled with wave motion. Therefore, the energy exchange
between these disturbances and the medium was not considered. In addition,
periodic breather disturbances, as shown in the experiment, are often not accomp-
lished. However, a single short-lived breather, the Peregrin soliton [19-§],
1s similar to the solution shown in Fig. 19.10, which describes a single wave
of anomalous amplitude.

'® Therefore, the previous consideration, where dissipative effects are significant, was carried out
without the use of solution methods for conservative media used by the authors [19-6 — 19-8].
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Figure 19.11. The form of a non-stationary perturbation in the form
of a Peregrin soliton Y ={1-4(1+2ir)(1+ 452 +47° )_1 rexpfir},
in space (right) and over time (left), where ¥ satisfies equation
iV, +05- W . +|Y[¥Y=0 [19.7]

A similar disturbance arises in
the field of wave motion and then
disappears, which corresponds to
the appearance and disappearance
of a short-lived anomalous wave con-
sidered above due to the interference
of a packet of standing waves of
the spectrum of modulation insta-
bility, moving at different speeds
under the action of the main wave
(see annex XXII).

It i1s important to note that in
the one-dimensional case under
discussion, the maximum amplitude
of the anomalous wave (breather)
is three times the average wave
amplitude.

The experiment was conducted
at the Technological University of

0.03f

0.02¢

g

i

-0.02} v

10
Fig. 19.12. Comparison of the
experimentally observed wave

of anomalous amplitude (solid curve)
with the filling of the envelope, which is

the Peregrin soliton (dotted line) [19-9].

The ordinate is the amplitude in meters,

the abscissa is the time in seconds

12

Hamburg in a 15x1.5x1.6 meter tank with water for wave motion kA~0.1;

the correspondence of the arising wave of anomalous amplitude (solid curve,
compared fig. 19.10) with the Peregrin soliton (dashed curve) was found.

Thus, waves of anomalous amplitude under developed waves, which
appear to be autowaves permanently existing and unpredictable under these
conditions — soliton-like perturbations with variable amplitudes [19-6 — 19-8],
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are actually definitely generated by modulation instability. That forms a wave
(or envelope) of anomalous amplitude due to the forced interference of
the modes of the instability spectrum under the action of wave motion
(see annexes XXI-XXII).
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5CHAPTER 9. Parametric and / or modulation
Instabilities intense Langmuir oscillations
in plasma

It is shown that, at least in the one-dimensional case, the
description of the modulation instability of Langmuir oscillations
in nonisothermal plasma by means of V.E. Zakharov equations
is similar to the description of the parametric instability of these
oscillations in cold plasma by the generalized V.P. Silin equations.
When using the equations of quasi-hydrodynamics for electrons and
the representation of ions by particles, the formation of the Maxwell
distribution function of ions in both description models is shown,
tha is, it becomes possible to talk about their temperature. The use
of a one-dimensional model 2+5x10" ion particles for calculations,
which would correspond to their number 10" +10" in a threedimen-
sional model, makes it possible to correctly describe the process
ofion eating due to scattering on field inhomogeneities and
Landau damping. In addition, the calculations performed will allow
verification of other methods to describe such processes.

SECTION 20.
SILIN’S AND ZAKHAROV’S MODELS

Intense long-wavelength Langmuir waves in plasma are unstable. This
instability leads to the excitation of the short-wavelength spectrum of Langmuir
oscillations. Correct models for the description of the instability of long-
wavelength Langmuir oscillations of finite amplitude were created in the
fundamental works by V. P. Silin [20-1] and V. E. Zakharov [20-2], respecti-
vely, for the cases of cold (the so-called Silin model) and nonisothermal plasma
(Zakharov model).

The scientific community was more interested in the effective mechanism
of wave energy dissipation discovered by V.E. Zakharov — the collapse of
Langmuir waves in nonisothermal plasma [20-3]. The mechanism of such
attenuation of RF energy proposed in this work was due to the formation of
a short-wave spectrum of Langmuir perturbations and the formation of plasma
density caverns, which can be described using the Zakharov equations [20-3]
obtained by means of quasi-hydrodynamic equations for electron and ionic
liquids at energy density of a long-wavelength Langmuir field, which is lower
than the density of thermal energy of plasma electrons.

In this case, localization regions of short-wave Langmuir oscillations
arise. Plasma 1s ejected from these regions (caverns) under the influence of RF
pressure, which can lead to the so-called collapse — narrowing and deepening
of the density cavity (the so-called peaking mode).
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In this case, the narrowing of the cavity should be accompanied by the
attenuation of the modes of the short-wave Langmuir spectrum on electrons due
to the Landau damping and “collapse” of the cavity due to the burning out
of the rf field (the so-called “physical collapse™). Later, many works were devoted
to the study of this extremely important phenomenon for plasma physics
(see, in particular, [20-4] — [20-14]).

A similar phenomenon was also found in the Silin model, that is, in
stronger fields in a cold plasma [20-15, 20-16], where, as shown below, the
mechanism of field energy transfer to plasma particles turned out to be similar,
although the role of Landau damping in ion heating as shown below turned out
to be somewhat exaggerated.

Different definitions of instability in the Zakharov model and in Silin
models are also intriguing: in Zakharov model it was modulation, and in Silin
model — parametric. Processes are usually called parametric instabilities when a
certain parameter of the system experiences high-frequency oscillations as in
the Mathieu equation (or so-called multiplicative noise, as in the Hill equation).
In this case, there may be an inverse effect of the arising disturbances on the
noise source (self-consistent system). A similar instability was considered
in [16-15, 16-16] — this 1s the so-called parallel pumping of spin waves. That is,
an alternating magnetic field which is uniform in space excited spin waves in
the samples, and the parameters of the equations for perturbations contained a
multiplicative component. It is not difficult to see the analogy of the case
discussed above with homogeneous excitation (this is the physical realization of
the long-wave pump wave in the models of V. E. Zakharov and V. P. Silin) in
space by the intense Langmuir field of the spectrum of small-scale Langmuir
waves and ionic disturbances in the plasma in models B E. Zakharov and V. P.
Silin. That 1s, formally, such an instability is self-consistent parametric.
However, the nature of such an instability is very similar to the modulation
instability process, especially since small-scale modulation of the plasma
density actually appears. Therefore, the use of such definition can be considered
acceptable.

Problems of description. 1t is known that in the hydrodynamic model
accounting for Landau damping is impossible. Therefore, a phenomenological
approach to representing the mechanism of this attenuation is usually applied.
In addition, the quasi-hydrodynamic description, as well as the kinetic description
(using equations for the particle velocity distribution functions), describes the
motion of a continuous medium and operates on objects that are not particles,
but small phase volumes and in the classical limit these phase volumes are
arbitrarily small."’

17 According to V. E. Zakharov and his colleagues (see [20-17]), the direct simulation of the
phenomena of collapse by the particle method is “the most consistent”.
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This leads to a lesser inertia of the substance as if they were described by
particles, to the formation of not only very small-scale and deep caverns of
plasma density, but also to exacerbated regimes (collapses), which are not
always adequate to physical reality.

As for the methods of description using large particles in high-dimensional
models, here is another extreme. Large particles have an excessively large
inertia, therefore, they are often replaced by local objects with cell regions where
the averaging of internal contents occurs.

On a small scale it brings this approach closer to the hydrodynamic descrip-
tion, while on a large scale it retains the features of the large particle method and
their averaged inertia. It is possible to increase the number of model particles in the
description, decreasing the specific fraction (charge and mass) of each, although
it 1s unlikely to be close to real physical parameters in three-dimensional space.

In one-dimensional models, some features of real processes are preserved,
at least at a qualitative level. And the requirements for the number of particles
in one-dimensional description models are significantly weakened, which
makes it possible to correctly apply the particle method.

For example, below, for one-dimensional modeling, 2-+5x10"model-ion
particles are used (which in a three-dimensional model would correspond to

10" +10" such objects in the volume of consideration), and these particles
already correspond to individual ions in their characteristics. Therefore, the
dynamics of such a number of particles simulating ions is largely adequate to
the dynamics of plasma ions; moreover, the mechanisms of energy exchange
between the field and particles correspond to the real interaction of ions
with the spectrum of low-frequency oscillations.'®

Below, let us discuss the development of instability processes in plasma of
intense Langmuir oscillations in one-dimensional Silin and Zakharov models,
with electrons being described only by quasi-hydrodynamic equations (taking
into account the phenomenological Landau damping by electrons), and let us use
a similar description or description using model particles for ions. In the latter
case, hybrid models (electrons are represented by quasi-hydrodynamic equations,
and ions by particles) allow us to see the formation of the Maxwellian velocity
distribution of ions and evaluate the efficiency of their heating.

Equations of the Silin hybrid model. 1Let us first consider the case of
parametric instability of an external long-wavelength Langmuir field of high
intensity for cold plasma, that is, when the energy density of the field exceeds the
density of the thermal energy of the medium W =| E, |’ /4z > n,T,. Particles are

in the field of an external wave, the length of which, for simplification of calcula-

'8 By the way, this allows verification of the hydrodynamic description, the description using the
equations for the distribution functions of ions, and the description of ions by the "particle in cell"
methods.
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tions, is set equal to infinity, oscillating with speed u,, =—(e, |E,|/m, @,)cos®.
The components of the field strength of the external wave are defined as it follows
=—i(| E, |exp[(iwyt +ip)—| E, | exp(—iw,t —ip)]/ 2. (20.1)

For complex slowly varying components £ ,E  and n, =1{n/ €,

accordingly, the high-frequency electric field, low-frequency electric field and ion
density of the excited short-wave spectrum, the following system of equations can
be written as (see annex XIV)

S — @, 6 4 .
E, | %= | g g 10" g - g (o Yexplig) -
ot 2w, Ny, kyn (20.2)
i3y E ) exp2ig) + E, J(a, ) | =0,
2en0 -
_ 1 ‘ .
E.= —@m {1 ~Jy(a,)+ gJf(an)} +=J(a,)[E,e"” ~E"e’]-
kon 3 2
ink,
- J,(a ) E 20.3
167en, of )z i (20.3)
—AJZ(an)Z (n-m)[E,_ E e?%+E* E* e2¥].
l67en,
d’ X,
e Z E.exp(ikynx,), (20.4)
oE, iAE, = 2%, [E,sz(am)exp(zws) +E,J(a,)]. (20.5)
ot 2en, 57

where the arguments of the Bessel functions are a, =nek,E, / may, D=yt + 4,
wlk .
Vi = €hy 2—0_[ . exp(=inkx, (x,,1))dx,, and v, =en, ,, are the components
7Z' —TT/Kgy s s

of the 1ion charge density, the RF field of the spectrum is
E =exp{-ioyt}- ZEn -exp{ink,x}, and the term 6-(n/n,,)°E, models the atte-

n

nuation of the RF mode of the spectrum by electrons, moreover n,, = 20,
A= (@), —w))/ 20,.

In addition, in (20.2) the dispersion term =k v /2w, was added,
which is proportional to v;e =T,/ m,, X, is the coordinate of the s-th particle

modeling the ion. The expressions are proportional to J,(a,) correspond to slow
movements in the flows of enthusiasm, and expressions are proportional to
J,,(a,), determined by the contribution to the nonlinearity of the second
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harmonic, 7, is the unperturbed plasma density, 7" is the electron tempe-

rature, and we assume that the ions are cold at the initial moment.
The equations of the hybrid Zakharov model. When a, <1 the equations

of the Silin hybrid model, taking into account the representations Jy(a)~a,/2
J,(a,)=1,J,(a,)= a’ /8 coincide with the equations obtained for non-isothermal

plasma of the Zakharov hybrid model [19-18], respectively, accurate to the
detuning value and taking into account substitutions £, - —iE and E;, — iE;:

o - +kn’ n
5En _ e 0 o’ VTe 9_ —li|:nmE +an n m}zo, (20.6)
ot 2w, n, 2n, =0
B - —ik,nn. T —ikyne
=—ikng =—2—"2" EE,+EE" + E _E 20.7
B, = m;n . (207)
d’x e _ .
dtzs = Y. E.explikynx,), (20.8)
Z n, =0, (20.9)
2n, 5,

where for the components of the density of ions we have the expression
lky .
=1y =~ j exp(=inkyx, (x,))dx,,
From the Zakharov equations (20.6) — (20.9) in the linear case, using the

representation OF / EOt = i), we can obtain the dispersion equation for the

nonisothermal case in the supersonic limit 52111.,,1 / nl.,n@z‘2 > kicin’®
—Q*(Q°=A)+A-4=0, (20.10)

2.2 2 2
where A=v; i’k /2w, and 4= %T; kozz);k ‘1520‘7; @ e -

On the other hand, linearizing equations (20.2) — (20.5) we shall obtain

the same dispersion equation for the case of cold plasma, where, however,

=A, =(w§e—a)§)/ 2@, and the magnitude is 4= le(an)a);em /M . Let us

note that the dispersion equations (20.10) witha, <1 and taking into account

substitutions E, & —iE, and E; —iE, with the corresponding choice of

detuning in these two cases coincide.
Positive definiteness of the detuning in the Zakharov model

A=v; i’k / 2w, 1is obvious; as for the detuning in the Silin model
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A= (a);e — a)(f )/ 2@, , it was shown in the book [20-19] that it is also positively

defined and the order of the instability increment is ¥ = Im @, at least in case
of excitation of long-wavelength Langmuir oscillations by a high-current
relativistic electron beam.

For normalized quantities y'=Q/w, and 4'— A4/ a)ze in Table 20-1,
values that correspond to two models for describing the modulation instability

of Langmuir oscillations are given. In the Zakharov model, the correction
y'=Q/ o, normalized to the Langmuir frequency should be written as

Table 20-1

Parameters of linear theory

for Zakharov and Silin models

Values Zakharov Model Silin Model
Correction square ~a
to normalized (y ) | _@a ) \/ GY) +A'(A
frequency 2 4
o> +vikint —w? V2 kn? @ — "

. A' __pe Te™0 0 ~ Te™0 A Ay __ pe 0
Detuning (A", 2a)2 20)26 —20)
Coefficient A A'(n) = L, kv, 1B A eJ

oefficient 2M 20 dznT A'(n) = (a,)
r n4
) = (A) \/ (A4 ) LBy (20.11)

where B=m_|E,[’ /8zn,T M. Since [(A) +4B(A]? —(A), it grows mono-
tonically with the growthaA’, without having a pronounced maximum, then for
small (A')’ < B and &’ z—(A')\/E . In this case |Q°|<B and the instability

increment 1s
2nvi ) (1 1E P m )
ImQ:|Q\~ 2 2Te Eﬁﬁe a)pe' (2012)
pe 72-”0 e

For large(A")’ oc B, and Q” ~—B. In this case the instability
increment is

1 |E’ |2 1/2
mQ=Ql~| —120l e 20.13
€2 (247zn07"eM] pe ( )
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This shows that the increment  a(T)F—
increases with increasing wave number

of perturbations, reaching its highest o1r
value at large values of the wave ol , .
number (20.13). In the Silin model, 30 37 4“4 T

if (A'Y = 4'/2, which is the same as Fig. 20.1. Amp{itude o.fthe.pumpﬁelc.l
' U3 o . a(t) as a function of time in the hybrid

A'=(m,2M)"J, (anm ), the relati- 0007 in the case of weak absorption of

ve increment reaches the values energy of short-wave oscillations [20-20]

1/3

1/3
me ) J12/3(an)- (2014)

f W0 (M
Perturbations with a wave number k, =k, for which a, =1.84 the

value of the Bessel function is maximum and the relative increment for such
perturbations reaches its maximum value

5w =+0.44i(m, | M)". (20.15)

Thus, in the Silin model, wave vectors for which a, =1.84 have the

greatest increment. With the development of instability, the amplitude of the
pump wave decreases and the maximum of the increment moves to the short-
wavelength region.

It is important to note that the values of the maximum increments of
parametric instability in the Zakharov model for supersonic disturbances grow
with decreasing scale. Moreover, if in the Zakharov model a decrease in the
amplitude of the pump field leads to a decrease in increments in the entire
instability region, then in the Silin model a similar process shifts the increment
maximum to the short-wave region, without decreasing its value (20.15).

Thus, it should be noted that the process of energy movement in the short-
wavelength part of the spectrum in two models is largely due to the linear
mechanisms of perturbation growth. In addition, the expected explosive increase
in the amplitudes of the instability spectrum modes in the supersonic regime of the
decay of an intense Langmuir field in a nonisothermal plasma under conditions

W =|E,|’ /Ar < n,T, is caused by large increment values in almost entire

instability region. This explosive increase in the spectrum amplitudes at the initial
stage of the process was observed in many numerical experiments.

Nonlinear modes of instabilities. An analysis of the dynamics of the
process showed [20-20] that, at the nonlinear stage of instability, density
caverns were formed in the Silin model, which then were destroyed. Here,
the destruction process was no longer accompanied by a breakdown of the
count, as it was in the case with the quasi-hydrodynamic description due to the
transition to the exacerbation mode [20-21]. The cause of the destruction of the
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caverns was the burnout of the field and inertia of the particles modeling the
ions, the number of which in the numerical experiment did not exceed 5x10°,

the number 40 +100 of spectrum modes.
In this case, the largest ionic cavity quickly “collapsed”, the ionic
component switched to the regime of intersecting particle trajectories [20-20,

20-22]. The energy taken by the ions turned out to be of the order (m, / M)" of

the initial energy of the pump wave [20-20]. At low absorption levels and small
initial fluctuations, the behavior of the pump wave is shown in Fig. 20.1.
As aresult of the instability, most of the energy of the pump field was
transformed into the energy of the short-wave Langmuir spectrum, then a partial
exchange of energy between the spectrum and the pump wave could be

observed, and when 7>40 the ion cavity “collapsed,” that is, it switched to
the regime of intersecting particle trajectories.

An analysis of the hybrid Zakharov model was carried out in [20-23], where
the last equation for pumping was substituted by the simple dynamics of weak
pump attenuation. The authors of [20-23] chose the mass ratio
m,/ M =1/(16x1836), the isothermal plasma, the region under consideration was

L=1,8x10"1 J05 600 modes of the spectrum were used for the quasi-hydro-

dynamic description, 3,000 positions were for the hybrid, that is, the coordinate
region is divided into just such a number of sections. The non-self-consistent case
of a constant or weakly varying field of an intense Langmuir wave was
considered, the influence of the spectrum of excited short-wave perturbations was
neglected.

0 500 1000 1500
14
Fig. 20.2. Ratio of the field energy density to the electron thermal

Energy density for the cases of hydrodynamic (a) and hybrid (b)
Zakharov models [20-23] (along the ordinate axis) versus time t
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First, the authors of [20-23] noted a much faster growth of perturbations
in the hybrid model, which they explained by large values of perturbations of
ion density in their chosen coordinate grid. Integral indicators — the RF energy
of the short-wave spectrum at the initial stage of modulation instability for the
quasi-hydrodynamic description and the description by the hybrid model,
turned out to be similar (Fig. 20.2).

|EP /87 , E[ /87
: . & 0.27
0% fay @)
|
| f \ i \ |
MA_/\ 3 - o \ / W i 2 /\.__ J\« 5 amdl j\\
% 500 1000 1500 0 500 .o 1500

on,, [ ny 0 én, /n,

Q.27

-0.08 - v A -Q.127 ' - 2
0 500 1000 1500 o 500 1000 1500

Fig. 20.3. Envelope of the RF field Fig. 20.4. Envelope of the rf field
|Ef /87 (a) and relative deviations |EJ’ /87 (a) and the relative deviations
of the ion density on,, / n, (b) of the ion density on,, / n, (b)
in the hybrid model, in the quasi-hydrodynamic model,
at time 34050;; [20-23] at time 1363 w,; [20-23]

Here, for the convenience of comparison, similar instability modes were
chosen, which are characterized by approximately equal maximum field
amplitudes and density perturbations. First of all, a noticeably larger number
of plasma density caverns and significant fluctuations in the density of ions
should be noted. Accordingly, the number of soliton-like perturbations of the
short-wave field density is also larger in the hybrid model. The maximum
cavity depth in the hybrid model is always less, the characteristic dimensions
along the system are similar. Estimates of ion heating under conditions of
constant magnitude or a slow change in the pump field is hardly of interest,
as the authors did not consider the effect of a short-wave spectrum on the
pumping.

At the initial stage of the developed process mode, it was found that
the relation between the relative perturbations of the ion density 6n,,/n, and

the integrated energy density of the short-wave field is dn,, / n, oc| E | /8.
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SECTION 21.
COMPARISON OF SILIN’S AND ZAKHAROV’S MODELS,
HEATING OF IONS

Below, let us compare the dynamics of the development of the modulation
instability of an intense Langmuir wave for two cases of significant interest [21-1].
In the first case described by the Silin model, the field energy density is much
higher than the thermal energy density of cold plasma. In the second case
described by the Zakharov model, the field energy density is noticeably lower than
the thermal energy of non-isothermal plasma, where the temperature of the ions
1s much lower than the temperature of the electrons.

Let us focus on the efficiency of energy transfer to ions and ion
disturbances as a result of the development of modulation instabilities in cases
of nonisothermal and cold plasma in the framework of hybrid models. For each
model, two cases of light ions (m /M=0510")and heavy ions

(m, /| M :8.10‘6) are considered. It is also of interest to find out how the

attenuation of the RF spectrum and, correspondingly, the field burn in density
cavities affect the character of energy transfer to plasma ions.
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Number of large particles modeling ions, 1s chosen to be
0<s<§5=20000 Particles are uniformly distributed over the interval
—-1/2<¢&<1/2, E=kpx/2m, v,=d&/ dr, initial conditions for particles are
dé /dr|_,=v,|._,=0, number of spectrum modes -N<n<N,
N=S§/100. The initial normalized amplitude of intense oscillations is
a,(0) = ek,E,(0)/ mea)ie =(0.06. The initial amplitudes of the HF modes are

given by the exspression e | _=e,=(2+g)10” in the Silin model and

n

e | ,=e,=(05+g)10" in the Zakharov model, where ge[0;l] is a random

number, ek,E, / mea)f,e =e exp(iy,) and V,|_, are also randomly

distributed in the interval 0 +27.
For perturbations of the ion density 7,, and slowly varying electric

1

field £, , dimensionless representations

. a)pe 7lkg
M,=M, +iM, =n.0, / ny= . Lﬂko exp(2zné)d&

_ ) .
and ek E, / mw, =E, _ +IiE,.are also used.

The density estimation of the energy E . transferred to ions was
determined by the expression

2
E., zo_zm.(ﬁ] ’_ LD
/4

0 me a)pe

where W, is the initial energy density of the intense Langmuir wave,
1 IZS(défS / dr)* is the ion energy in the corresponding normalization,  is the

increment of linear instability. The fraction of the energy of the intense Langmuir
wave transmitted to ions in the case of a non-isothermal plasma (Zakharov model)
was determined by the ratio W /n,I and in the case of cold plasma (Silin model)
by the ratio (m/M)"”.

A program that implements a mathematical model of the problem was
created using JCUDA technology [21-2]. JCUDA provides interaction with
CUDA technology from a Java program and makes it possible to carry out
high-speed computing in parallel on a GPU.

Results of numerical simulation. For the parameters that are responsible
for the nature of absorption of the energy of the HF spectrum 7,, =20 and
® =60 /y =0.05, the energy of the main wave, the energy of the small-
scale Langmuir spectrum, and the energy transferred to plasma electrons
and 1ons, normalized to the initial energy of the main wave, are presented
in Fig. 21.1.
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b) b)

Fig. 21.1. Relative values of the energy of the main wave (1),
energy of the small-scale Langmuir spectrum (2), energy transferred
to the electrons (3) and ions (4) of the plasma, for the Zakharov model (left)
and the Silin model (right) for light ions (a) and heavy ions (b)

The energy of the intensive long-wave Langmuir wave first passes into the
energy of the HF Langmuir short-wave spectrum. It is at this stage that plasma
density caverns filled with the rf field are formed. Then the rf field due to
attenuation by electrons, which is considered phenomenologically in these models,
burns out (while transmitting its energy to plasma electrons). Caverns under these
conditions “collapse”, LF waves are excited, the ion paths intersect, and the energy
of the “collapsed” caverns and the LF spectrum are transferred to the ions.

It 1s interesting that for the case of Buneman instability in plasma discussed
in [21-3], the dynamics of a decrease in the kinetic energy of electrons is similar to
the dynamics of the field of a long-wave Langmuir wave (which causes such
intense oscillations of the electron velocity in the Silin model).

It is possible to determine the root-mean-square velocity at the end of the

numerical simulation o(v,) = stf /'S, while in the Zakharov model we shall

obtaino(v,) =0.015 for light ions and o(v,) = 0.006 for heavy ions. In the
Silin model o(v,) =0.002 is for light ions and o(v,)=0.0005 is for heavy ones.
Total particle energy in the selected normalization 7 = Z (dé, /d r)? in the

Zakharov model for light ions 1s 4.689, total particle energy for heavy ions
1s 0.808, in the Silin model for light ions it is 0.086, and for heavy ions 0.005
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The differences in total energy values in different models are determined
by different values of the linear increment, and for cases of light and heavy
ions, by the choice of ion mass. A normal distribution can be built on the basis
of the mean square velocity, then particles that are outside it (mainly in the so-
called “tails of the distribution function”) in the Zakharov model for light ions
have 13.8 % of the total energy, for heavy ions it is 9.2 %, and in the Silin
model, it is noticeably larger, that is, for light ions it is 25.6 %, and for heavy
ions it is 13 %, respectively. That is, in the case of instability of an intense wave
in cold plasma, a significantly larger fraction of fast particles can be expected.

S S
500%
500%
100%+ L uhr{ \Nﬂh” M J|1 J "I IOO%-U\_[\ M
My 05 - s 0 05 %
Fig. 21.2. lon distribution S(&) Fig. 21.3. lon distribution S(&)
in the developed instability regime in the developed instability regime
in the Zakharov model in the Silin model

The intensity of the low-frequency spectrum in case of non-isothermal
plasma (Zakharov model) is quite large in a wide range of wave numbers, which
corresponds to the spectrum of ionic sound after the destruction of density caverns
found in numerical experiments [21-4] — [21-7]. On the contrary, in cold plasma,
long-wave oscillations dominate in the spectrum. It is worth paying attention to the
fact that the energy of the LF field is much lower than the ion energy in all the
cases considered. A decrease in the field energy with time occurs due to the
transfer of energy to ions and due to the destruction of plasma density caverns,
as it was indicated in [21-6].

For both models, the kinetic energy of ions in the normalization selected

above 1s
1/2 2
.[1/2 é:so ’ (21.2)

The selected rate of burn-out of the HF ﬁeld in the caverns is determined
by the value @ =8/ y. It is of interest to find out how the calculation results
depend on this parameter. Obviously, a decrease in this parameter not only slows
down the burnup of the rf field in the caverns, but also broadens the spectrum
of rf modes, i.¢., increases the fraction of its small-scale components, which leads
to deepening of plasma density caverns and to an increase in the kinetic energy
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of ions ejected from the caverns. Let us note that with the decrease of the
attenuation of the HF modes, the ion velocity distribution function in the two
models is getting closer and closer to the normal distribution, i.e. to the Maxwell
function, which is shown in Fig. 21.4. If in the Zakharov model for sufficiently
strong absorption the differences from the normal velocity distribution reach
19.9% and in the Silin model they reach 13 %, then for relatively weak
absorption, differences from the normal the distributions are only 6.9 % for
the Zakharov model and 8.8 % for the Silin model.
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Fig. 21.4. Speed distribution of ions for the Zakharov model (left)
and the Silin model (right) for light ions (a — ©®=0.05, b— 0 =0.001)

That is, if the deceleration of burning of the RF field in cavities in the
Zakharov model significantly brings the velocity distributions of ions closer to
the Maxwell distribution, then in the Silin model this is prevented by significant
“tails” — the presence of fast particles whose energy is comparable to total
ion energy.

As expected, with a decrease in the absorption of the HF spectrum, energy
ultimately transferred to ions grows in almost the same proportion in noni-
sothermal and cold plasma (see Fig. 21.5). For the above conditions [21-1],
the fraction of the field energy of long-wave Langmuir oscillations, which is
transferred to ions in the Zakharov model does not exceed 6.3 %, and in the
Silin model it does not exceed 5.4 %. That is, here, with increasing nonlinearity,
the relative efficiency of energy transfer to ions decreases.
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Fig. 21. 5. Kinetic energy of ions in the Zakharov model (left) and in the Silin model
(right) for light ions (1 — ®=0.05, 2— ©=0.015,3—- ©=0.001) as a function of time t

Let us note in conclusion that the scales of ion density perturbations

smaller than the Debye radius of the ions 7, =v;; /@, do not contribute to the

formation of low-frequency electric fields due to the screening effect. In terms
of ry,k, / 27 , the ion Debye radius can be estimated [21-1]:

1/2
roky /27 =R, <y, > {Lj[ﬂj | (21.3)

a)pe me

In the developed instability regime, this quantity is of the order of
magnitude, and the number of modes of the ion density spectrum does not
exceed the value, which does not contradict the analysis performed.

Thus, it is shown that the mechanism of nonlinear absorption of Langmuir
oscillations discovered by V. E. Zakharov when the density of the plasma
thermal energy is higher than the density of the RF field is also applicable to
fields whose energy density significantly exceeds the plasma thermal energy.

However, nonlinear damping of intense Langmuir waves, which leads to
plasma heating, is traditionally explained by the Landau damping in the resulting
collapsing caverns of plasma density. This apparently only takes place to some
extent. It was shown above (see also [21-1]) that the decisive mechanism for the
transfer of field energy to ions and their further thermalization is multiple
scattering by numerous field inhomogeneities arising from instability.

The processes described in the two models are similar, which should not
be surprising, because the equations of the Zakharov model can be obtained
from the equations of the Silin model by reducing the field intensity of the
Langmuir wave and taking into account the electron temperature.

With a decrease in the attenuation of the rf modes, the ion distribution
function is less and less different from Maxwell's, which allows talking about
the temperature of the ions, and in the Silin hybrid model the instability process
is characterized by the presence of a large fraction of fast particles. It is important
to note that with a decrease in the absorption of the HF spectrum, the energy
ultimately transferred to ions increases.



PART |. Processes in nonequilibrium media ~ 147 ~

References to section 21

21.-1. Kirichok A. V., Kuklin V. M., Zagorodny A. G. One-dimensional
modulational instability models of intense Langmuir plasma oscillations using
the Silin—Zakharov equations // Physics—Uspekhi — 2016. — V. 59. — No. 7. —
P. 669-688.

21-2. Gushchin 1. V., Kuklin V. M., A. V. Mishin A. V., Priymak A. V.
Application of CUDA technology for modeling physical processes. / ed.
V.M. Kuklin and A.V. Priymak — Kh.: V.N. Karazin Kharkiv National
University. — 2017 (in Russian).’

21-3. Kuzelev M. V., Rukhadze A. A. Electrodynamics of dense electron
beams in plasma. — M. : Science. Ch. ed. phys.-mat. lit. 1990. — 336 p. (in Russian).

21-4. Galeev A. A.,, SagdeevR.Z., Sigov Yu.S., Shapiro V.D.,
Shevchenko V.I. Nonlinear theory of modulation instability of Langmuir
waves // Plasma Phys. 1975. Vol. 1. — No. 1. — P. 10-20.

20-5. Sigov Yu. S., Khodyrev Yu. V. One-dimensional quasi-collapse of
Langmuir waves under parametric action on plasma // DAN SSSR, 1976. —
V. 229. — P. 833-836 (in Russian).

21-6. Sigov Yu. S., Zakharov V. E. Strong turbulence and its computer
simulation. // J. de Physique.1979. — V. 40. — #C7. — P. 63-79.

21-7. Robinson P. A., de Oliveira G.I., Effect of ambient density
fluctuations on Langmuir wave collapse. Phys. Plasmas, 1999. — V. 6. —
P. 3057-3065.



CHAPTER 10. Structures of different scales
and topologies in a thin layer convection

The process of structural-phase transformations in a thin layer
of convectively unstable liquid or gas is discussed within the
framework of the Proctor-Sivashinsky description model, which is
valid for a low level of heat transfer at the layer boundaries. It is
shown that transitions are accompanied by a jump in the state
function, and the transition time is inversely proportional to the
change in this function and is much shorter than the lifetime of
metastable states. The relation between the spectral and visual defects
of the convective field in the formation of a stable state is discussed.
It is shown that the inclusion of vortices of a different nature in the
system, within the framework of the generalized Proctor-Sivashinsky-
Pismen model, leads to modulation instability of developed convection
and the formation of large-scale poloidal vortices, i.e., to the effect
o the regular hydrodynamic dynamo predicted by S. S. Moiseev.

SECTION 22.
STRUCTURAL-PHASE TRANSITIONS IN A THIN LAYER
OF CONVECTIVELY UNSTABLE MEDIUM

In a number of applications, such as thin clouds, convection between
closely spaced surfaces, the Proctor-Sivashinsky model [22-1, 22-2], which was
used to describe the development of convection in a thin liquid layer with
poorly heat-conducting boundaries, was of great interest. The authors of [22-3]
discovered stationary solutions and studied their stability. The peculiarity of the
model is that it distinguishes one spatial scale of interaction, leaving for the
evolution of the system the ability to choose the nature of symmetry. All spatial
perturbations of the same size, but of different orientations interact with each
other. That is, the nonlinearity in the system is vectorial. It turned out that the
presence of minima of the interaction potential of modes, the absolute value
of the wave number vectors of which is unchanged, determines the choice
of symmetry and, accordingly, characteristics of the spatial structure.

By modifying the structure of the mode interaction potential in the
framework of a similar generalized Proctor-Sivashinsky model, the symmetry
of stable solutions can by changed by the number of minima [22-3]. The
prospectivity of the Proctor-Sivashinsky model was also manifested in the
possibility to form a generalized Proctor-Sivashinsky-Pismen model, when taking
into account the poloidal vortices inside the thin layer [22-4]. This model, as
further studies have shown, was able to correctly describe the process of
transformation of the energy of the periodic structure of the Proctor-Sivashinsky
toroidal vortices into the energy of a large-scale poloidal vortex motion [22-5].
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This phenomenon of "hydrodynamic dynamo" is responsible for the formation
of large eddies in convective layers, in particular in the atmosphere of planets.

It is shown below that such a process is a consequence of the secondary,
already modulating instability of the system of developed convective cells,
as aresult of which not only a self-similar structure occurs — convective
cells of different scales [22-7], but also a large-scale poloidal vortex is formed
[22-5, 22- 6].

This phenomenon, which was previously studied only for irregular
models (see the detailed review [22-8]), as suggested by S. S. Moiseev, can
occur as a result of the instability of the regular spatial convective structure
of finite amplitude.

The Proctor-Sivashinsky equation. Assuming that the liquid (or gas)
layer is thin, it is possible to integrate all perturbations caused by convection
along the layer height and pass to the two-dimensional description [22-1, 22-2]
(see also [22-9]). In two-dimensional geometry, the Proctor-Sivashinsky equation
for the temperature field of convection takes the form

0¢

a—T+V4¢+V[(2—7V¢75—|V¢)2 DVél+ap=0 (22.1)
- 8(0 = 8(0 ) . . . . - =
where Vo =i 'g-lrj 58 S the two-dimensional operator, in this case §, j —

are unit vectors orthogonal to each other in the plane (£,$) of the medium
separation. It should be noted that the quadratic nonlocal (i.e., the presence
of derivatives with respect to time or coordinate) nonlinearity in the equation
1s present in the form of a term proportional to };,, and is due to the dependence
of viscosity on temperature along the height of the layer, and the nonlocal cubic

is taken into account by the term proportional to ¢3

Let us assume k, =1, that is let us restrict to the case of weak excess
above the threshold of convective instability. Indeed, for any deviation of the
wave number from unity, the perturbation amplitudes rapidly decrease. Here @
is the relative temperature at the upper boundary of the layer. An increase
in this value indicates an increase in the thermal conductivity of the layer as
a whole.

To describe such convection under the same conditions, the simplified
Swift — Hohenberg equation is often used [22-10]

0 252 2 3
a—?:e¢—(l+V)¢—27¢ +3¢° (22.2)

where the vector character of the nonlinear terms is replaced by the scalar one.
Here e = (1—a).
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The growth of perturbation amplitudes during instability
¢ o exp{Im w-T} occurs with increment Imw=e—(k* —1)>. For ¥ >0 gas
flow (this corresponds to gas convection) ascends to the center of the cell,
for ¥ <0 (which corresponds to fluid motion) it does vice versa.

The Swift — Hohenberg equation, as noted in the review [22-11],
describes a system of clearly defined hexagonal cells after the formation of an
amorphous state of random convection as a result of the soft (for liquid) and
hard (for gas) instability regimes, which was observed in particular in [22-12].
In this case, the nature of the instability demonstrates all the features of the
first-order phase transition — the formation of a clear spatial structure of
convection from the amorphous state.

Below let us discuss soft and hard modes of structural-phase transitions in
the Proctor-Sivashinsky model. In contrast to the traditionally applied Swift-
Hohenberg equations we shall use the Proctor-Sivashinsky 3D equation that is
more suitable for the real conditions. This task is obviously three-dimensional
in space and non-stationary, which at first glance creates significant problems.
However, the Proctor-Sivashinsky model allows reducing the dimension of the
description and focus on topological aspects, that is, the type, size, and time of
development of spatial structures.

In the case of a more realistic convection model described by the Proctor-
Sivashinsky equation (1), both a first-order phase transition and a second-order
phase transition can be observed, and it was possible to find a state function that
is responsible for the topology of the formed convective structure [22-13 ].

If the temperature dependence of viscosity is not taken into account

7, =0, in the model, which is commonly called the Proctor-Sivashinsky

model, only a nonlocal cubic nonlinearity V[|V ¢)° | V ¢ ] remains

0
LAV AV |V’ Vel rag =0, @)
This equation can be represented as 0O¢/0T =—0F[@]/ Oo¢p , where

OF[@]/ 6¢ is the variational derivative and is the functional

FIgI=-[d6 a9V~ (V) - (Vg -5 4°)

The peculiarity of this model is that it also describes Maradoni convection
and convection of a layer with one of the free boundaries [22-2].

The most interesting phenomenon in convection of a thin liquid layer is
the process of changing the topology and intensity of spatial convective
structures, which, as it turned out, were not difficult to study. These processes,
as it will be shown below, are analogues of second-order phase transformations,
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when the topology and, partly the intensity of the spatial structure of convection
change in the system.

Let us restrict to the case of the absence of a dependence of viscosity
on temperature (y, =0). Equation (22.3), which determines the dynamics

of the temperature field of this process in the horizontal plane (x, y), can be
written in the form:

a0
oT

where @ is the normalized temperature, f'1s the random function describing the

:gz®—(1—V2)2CD+%V(VCD\(D\2)+ e’ f (22.4)

external noise, and the quantity &” = e, determining the excess of the convection
development threshold is assumed, as before, to be sufficiently small (0<g<1).

Let us represent the solution in the form of a series ® =¢) 4, exp(il?ﬁ) with
J

|k ; I=1. When replacing T .g* =t, for slow amplitudes A; we shall obtain

a convenient representation of the Proctor-Sivashinsky model for convection
description:

0A; N 5
ot :Aj_ZII/ij‘Ai| Aj+f (22.5)
where the interaction coefficients are determined by the relations
Vy=1,
V,=(2/3) (1 -2 (lgl.l;]. )2 ) = (2/3) (1 +2cos’ 9, ) : (22.6)

—

and lgl-j is the angle between the vectors k; and /E ; - Expressions (22.5) — (22.6)

must be supplemented with initial values of the spectrum amplitudes 4,

ie A ; lo=4 j, - In contrast to the Swift-Hohenberg equation (22.2), where the

cubic nonlinearity is presented in scalar form for qualitative reasons, the
nonlinearity is vectorial, which is the reason for successive changes in the
topology of convective structures.

The width of the instability interval in k-space is a ring — the average radius
of which is unity, and the width of the order of magnitude of the relative
overthreshold &, i.e. much less than one. During the development of instability due
to the growth of nonlinear terms, the effective increment of the modes lying
outside very small neighborhood near the unit circle will decrease and may change
sign, which will lead to narrowing of the spectrum to the unit circle in k-space.

Since the aim of further research will be to study the stability of spatial
structures with a characteristic order size 277 /k oc 27 and an important charac-
teristic for visualizing simulation results is the clarity of these structures,
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then let us restrict ourselves to the consideration of a somewhat idealized model
of the phenomenon, assuming that the vibration spectrum is already located
on a unit circle in &k — space.

From the results of preliminary studies [22-3], it became clear that the
system can have at least two stationary solutions in the form of a roll structure
(shafts) (see Fig. 22.1 a), and in the form of a square cell field (see Fig. 22.1 b).

Fig. 22.1. Convective structures: rolls (a)
and square cells (b)

The Proctor-Sivashinsky model in the absence of temperature dependence

of viscosity (7 = 0) was studied in detail in [22-9.]. It was shown that after
the structural-phase transition of the first kind from the amorphous state of
random convection, a quasistable system of convective rolls is formed, which,
as a result of their modulation within the structural-phase transition of the
second kind, form a stable field of square convective cells. The structural-phase
transition of the first kind, noted earlier in [22—11], corresponds to the transition
from an amorphous state of convection to a state that has the form of a pro-
nounced spatial structure. It should be emphasized that such a spatial clarity of
the structure is observed only in conditions of proximity to the instability
threshold. If, as a result of instability, the topology of the structure changes,
we can speak of a structural-phase transition of the second kind.

Amorphous state. The mechanism of competition of spectrum modes.
From equations (22.5) — (22.6) under the initial conditions of the form, it can be
seen that at the initial moment the development of the process will
A; |,o=A;, be determined by an explosive exponential increase in the

amplitude of the spectrum with the same linear increment equal to unity in a given
time scale. The growth rate is limited when it is necessary to take into account the
second term (22.5), which corresponds to a nonlinear increment equal to

N N
(Imw),, =1=Q V; |4, ) o 141D A7 (22.7)
i=1 i=1
in this case, the average value of the interaction potential is
4

V) 3 (22.8)
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Whence at the beginning of the process the active stage of interaction of
modes, when the amplitudes of the modes of the spectrum are approximately
the same, we shall obtain the expression given below for the perturbation
density of such an “amorphous state”

I= LZN: Al =3
N — i amor 4 . (229)
Let us show that the amorphous state is unstable. Let us consider the
nonlinear rise increment (or attenuation decrement, which depends on the
sign of the expression) of the j-th mode (obviously at the beginning of the

process Im w, =1)

N
(Im a))jNL :l_zVij | 4, |2 ) (22.10)
i=1

At the end of the linear stage of the rapid growth of perturbation amplitudes
(of spectrum mode - spectral line) and the achievement of the so-called
“amorphous” state, when nonlinear increments become much less than unity, the
process sharply slows down. As a result of a random ejection of one of the modes
(that is, if one of the modes-spectral line turns out to be larger than the others),
then for it the second term of the right-hand side of equation (22.5) becomes
smaller than that of the neighboring modes. That is, for this mode of larger
amplitude, the value (22.10) remains positively determined and largest one, and
for neighboring modes, the nonlinear increment turns out to be either less or even
negative, which corresponds to their attenuation. The neighborhood of the
growing modes decreases rapidly and as a result, only two modes are left shifted
by an angle 7 in the spectrum, and the total energy of such a roll structure
isequalto /=1.

This state is unstable, which leads to an increase in the lateral spectrum
9 = /2 relative to the leader mode, the spectral width of which is inversely

proportional to the size of the regions, where the roll modulation occurred. The
side spectrum narrows and its amplitude increases, which expands the areas
with modulation of the shafts, which in their turn quickly merge. These areas
are domains'’ with different orientations (see (Fig. 22.4 ¢). The modulation of
the rolls increases until a field of square convective cells (i.e. toroidal vortices),
1s formed. This process of forming a new structure is a second-order phase
transition.

The energy of this state is equal to /=1.2. Each of these two states
1s characterized by different values of intensity / and has a different topology.

" The domain boundaries do form the initial defects of the structure of the square convective cells.
Then the number of defects decrease rapidly (see Annex XXVI).
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Let &, (# =0) each mode-spectral line be given uniformly from zero to 27

and the interval should be divided into N equal parts (the number of which
is equal to the number of basic modes). Then, if we require zero values at the
boundaries, the spatial dependence of each n-th mode will be

A, Sin (2znx)Sin (27my ) , (22.11)
where n, m (they can be represented as n=N-Cos$ ,m=N-Snd) are

integers, in this case N*=n*+m’. In the calculations, generally speaking, it

. . . . 2 2 2
suffices to sum over n, since m is determined from the relation m”~ =N~ —n".
Obviously

n<N, m=+N -n’ >0, (22.12)
That is, in this case (22.11) can be written as
A o Sin(27nx) Sin2zyNN* —n), (22.13)

Structural-phase transitions. The development of disturbances in the
system, as shown by a numerical analysis of equation (22.5), proceeds as it
follows. From the initial fluctuations,
a wide spectrum of 4 is rapidly
14 excited. The value of the quadratic

12 form of this spectrum can be estima-
1 1 2 . .

i I—/_ ted :sz A; by equating the right-
hand side of (22.5) to zero, and we
will obtain a value close to 0.75. In

the case of a large number of modes
with high accuracy of calculations,

16+

06

0.4

0.2

R

° n - the system is delayed in its develop-
t ment, remaining in dynamic equilib-
Figure 22.2. The behavior over time rium. For further development —
of the integral characteristics of the “crystallization”, one of the modes
process. The upper curve Lz A must receive a portion of energy that
N&T .

. _ exceeds a gertam threshold. N
the middle curve — /Z(A[ ~A) =0, That is, under these conditions,
N il a certain level of noise — fluctuations —
and the lower curve NZA" =4, is necessary f #0. This is achieved

with a final noise value, or with
a decrease in the accuracy of
calculations, which, as noted in [22-14], is equivalent. Similar cases when
noise is able to provoke or accelerate the process of instability are collected

are the average amplitude
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in the book [22-15.]. Studies of the process revealed the following dyna-
mics of changes in the integral characteristics of the process over time
(see Fig. 22.2).

urllIIhllilulhi|IlldliiIiiIdJh|!IﬁlmiilIl!l!IththhHil]JhiﬂIlhliiililhIHiIiilIlM o et ananat b i L& 00 bosnil st o, Ll
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t=10.57 1=0.75 &5 =047 t=126 1=1.006 & =0.248

a b

g .lx‘-...|.J.IL ls II” | .,.| L. |l!l PP [ N A | ||||L | of-

t=146.58 I=1.07 o =0.146 t=200.15 I=1.199 & =0.07
c d

Fig. 22.3. Stages of instability development: spectra of the amorphous state (a)
short-lived relatively unstable state (b — convective rolls), intermediate short-lived
unstable state (c) — the formation of domains, the boundaries of which determine
the initial number of defects in the structure of the cells field)
and (d) —a stable state (is the field of convective cells) [22-9]

It is after the first burst of the derivative O /0t that an amorphous
structure is formed — a system of convective rolls, and up to the second burst
the value / =0.75 changes little.

The next burst 0/ /0t signals the occurrence of an unstable structure
(rolls and rolls modulated in the longitudinal direction) with a new value
1<I<1.07, after this burst 0/ /0t of the derivative, the rolls experience
longitudinal modulation, the period of which decreases, and the next third burst
0l / Ot of the derivative leads to the appearance of a stable structure of con-
vection cells / =1.2. This behavior of the system convinces of the existence
of structural-phase transitions in this system.



~ 156 ~ Selected chapters (theoretical physics)

Fig. 22.4. View of the fragments of the spatial structure of the temperature
field distribution on the surface of the layer a). after a structural-phase transition
of the first kind with the formation of convective rolls, and b) during transverse
modulation of the rolls, c) during the formation of domains — a metastable spatial
structure, after the destruction of the roll system, d) during the formation
of a stable convective structure — square convective cells

The state function, as it is easy to see, is quantity / . It was shown above
that the structures that arise during transitions described by a burst of the
derivative of this function have distinguishable topologies and are characterized
by its fixed values. For each structure there is a certain equilibrium value of the
state function. Nevertheless, despite the long existence of each quasistationary
structure, there is a mechanism for its destruction and the formation
of a structure with a different topology.

Generally speaking, the times of development of relaxation processes when
the system moves to a more equilibrium state are usually determined by the
difference in the values of the state function after the transition and before it.
The larger this difference is, the faster is the process of transition from one state to
another. Another thing which is important to note: the sequence of change of states
is determined by the times of development of instabilities (playing the role of
relaxation processes) that ensure a transition to an increasingly equilibrium state of
the system. Moreover, faster relaxation processes due to large differences in the
equilibrium values of the state function manifest themselves before.
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Let us make sure that in this case all the phenomena occur in a similar
sequence and within the framework of a similar scenario [21-16].

It was a numerical analysis of the model that made it possible to confirm
the presence of structural-phase transitions.

x1o0*t dihdit
20 T T T T

10 =

di

JUooa

| | | |
0 20 40 60 80 100 120
t (t,=1.6,1,=44, 1 =56)

Figure 22.5. The behavior of a derived state function. The characteristic times
of transient processes are t, = 1.6 is the time of occurrence of the “amorphous”

state, T, =4.4 is the time of formation of pronounced shafi-like structures,
and 7, = 5.6 is the time of formation of a system of cells for one

of the implementations of the process of establishing convective motion.

It is possible to verify that the times of formation of states are inversely
proportional to the difference between the values 1 = ZAQI, after the structural-

phase transition /{"” = (D 4*){" and before this transition {7 =D 4> )"

1.€,
7, ~{Q_ A" )= A )V =AL (22.14)
It is easy to see that
T,/ 1, = AL [ AL, (22.15)
Thus, based on a numerical study of the Proctor-Sivashinsky model,

it was proved that the sum of the squares of the amplitudes of the modes [
1s a function of a state with a certain topology.
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Having a certain topology, each state is characterized by a certain
equilibrium value of the state function. Quasistable states are destroyed due to
instabilities, the development time of which can be estimated from the
magnitude of the momentum in time of the derivative of the state function.
It is shown that the characteristic time of instabilities that destroys the former
state and forms a new state are inversely proportional to the difference between
the values of the state function after and before the structural-phase transition.

It is also shown that faster relaxation processes, i.e. structural phase
transitions precede slower ones, as can be seen from fig. 22.2 and fig. 22.

Note that in nature, thin cloud cover also often forms a longitudinally
modulated shaft system, which is noted in fig. 22.6

Figure 22.6. Fragment of thin clouds in the form of modulated
convective rolls. Kharkiv Ring Road 09/12/2012

The value of | in this case reaches values close to unity (/ = 1).
However, this state is not stable: convective shafts undergo modulation
along the axis of rotation of the gas (or liquid), whose characteristic size is
reduced. In this transition state, the system takes sufficiently long time
(which increases slightly within certain limits with an increase in the number
of modes), and the value I =1.07 is preserved. After sufficiently long time,
tens of times greater than the inverse increment of the initial linear instability,
only one mode “survives” from the newly formed “side” spectrum, the
amplitude of which is compared with the amplitude of the initial leading
mode. In the end, a stable convective structure is formed — square cells,
in which the quadratic form of the system reaches the value of [ =1.2.
So, fig. 22.7 shows the spatial structure of convection of a thin cloud layer.

Figure 22.7. A fragment of the spatial structure of convection
of a thin cloud layer. White Lake (near Zmiev) 10/06/2012
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Thus, a feature of the Proctor-Sivashinsky model for convection description
is the presence of three states. The times of structural transitions between
metastable states are much shorter than their lifetime. The characteristic size
of convective formations in the developed instability mode and the accepted
measurement units are 27/k oc2z of the order of magnitude and the length
of the wave vectors is of the order of unity.

The interaction potential =(2/ 3)(1+2cos2 31]) of spatial modes has

a deep minimum for the angles 3, =9 -8, between vectors k. and k, two

spatial modes &, = +7/2 . These are minima V', » as shown in [22.17], that

cause instability of the rolls structure. For the existence of a minimum V", for

modes with relatively small amplitudes allows continuing their growth, while
suppressing disturbances that arose before.

When approaching a stable state, the spatial structure gets rid of many
defects (arising mostly at the boundaries of homogeneous regions — domains,
see Fig. 22.4 c.), and there is a correlation between the relative share of visually
(geometrically) structural defects and the defectiveness value, defined as the
ratio of the squares of the amplitudes of the spectrum modes that do not
correspond to the system of square cells to the total sum of mode squares
(see annex XXVI).

Namely, in the case of a more realistic convection model described by the
Proctor-Sivashinsky equation (22.1), it is possible to observe the process
of both the first-order phase transition and the second-order phase transition and
to find the form of the state function that is responsible for the topology of the
formed convective structures. Let us note that such a description of phase
transitions did not use phenomenological approaches and various speculative
considerations, which allows more closely examining the nature of transients,
which arouses the greatest interest of researchers, as an example of this model.

The physical nature of the second order phase transition. The onset
of longitudinal modulation of convective rolls leads to the occurrence of
convective motion in a plane parallel to the direction of the rolls, which adds to the
strong convection across the rolls. A decrease in the spatial period of the roll
modulation leads to an increase in convection as a whole and its equalization
in two perpendicular planes, an increase in the temperature on the upper surface
of the layer and, accordingly, in the energy value, that is, in the state function,
which indicates a change in the structure and a second-order phase transition.

If we assume that domains with a dominant structure arise and propagate
in the convective zone, then we will have to admit that the correlation rate
of spatial perturbations in this case is extremely high. This paradox is explained
by the fact that the process of a second-order phase transition is described,
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at least here, by equations (22.5) — (22.6)*°, whose solutions are the set of
eigenfunctions (22.4) with different wave vectors

O = gZAj exp(il%?),
]

The process of phase transformations does not cover individual local
regions, but immediately the entire convection zone, where the conditions for
the phase transition are satisfied. In this case, the formation of local domains
with a homogeneous spatial structure in different places of the convective layer
is the result of the interference of these eigenfunctions.
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SECTION 23.
MODULATION INSTABILITY OF THE SYSTEM
OF CONVECTIVE CELLS IN A THIN LAYER.
HYDRODYNAMIC DYNAMO EFFECT

Sivashinsky—Proctor—Pismen model. For the first time, the possibility
of the occurrence of modulation instability of a system of convective cells
in an extremely productive Sivashinsky—Proctor—Pismen model [23-1] was
announced in the report [22-2]. This modulation of the system of developed
convective cells in a thin liquid layer between poorly heat-conducting
horizontal surfaces (the formation of which was discussed above) is caused
by the generation of vortices of a different nature than those that form the
convective structure.
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As a result of the development of modulation instability in the system
of the developed regular structure of convective cells, large plane vortices also
arise. In other words, this is the effect of the hydrodynamic (vortex) dynamo
[23-2 — 23-4], which, in contrast to the well-known physical models considered
in a medium with spiral hydrodynamic turbulence (for more details, see
review [23-5]), is a regular process and not necessarily due to the presence
of uncompensated helicity in the system.

The Proctor-Sivashinsky model, as a result of modification by the author
of [23-1], describes convection similar to that considered above, but taking into

account the poloidal velocity U o =rot(e, V),
Cb:82(13—(1—V2)2CD+%V(VCD|CD|2)+7/HV®><V‘P, (23.1)
V¥ =VV 2O xVD, (23.2)
Where y, is the reciprocal of the Prandl number Pr=v/x, characterizing the

nonequilibrium state of the liquid, v is the kinematic viscosity, here K is the
specific thermal diffusivity, ¢ <<1 in this case.
Modulation instability of a system of convective cells. The threshold of

secondary instability is determined by vanishing &, =275°I'2/20 -1, where

I'=¢-yp., b=4/5/34 is the renormalized amplitude of the perturbations of the

primary instability considered in the previous section. When the threshold
(&, > 0) is exceeded, conditions arise for the existence of secondary instability,

with increment maxima

Imo,_  =1-6b>/5+2702b*[200+2/27T (23.3)
T T IS
i \ DO
@
@@ g & Figure 23.1. Regular defect in convective
®|© @ < structure. In the upper right corner there
is a fragment of the primary undisturbed
©© structure. The dotted line shows
QO the characteristic streamlines of large-
®/© scale vortices [23-3, 23-4]

are close to the main modes of the primary structure (£ ==+1, k,=0u k. =0,
k,=%£1) in mutually perpendicular directions at equal A=(2/bD) | &, |<<1
distances from these points. As the wave numbers approach the modes of the
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primary structure in space, the increment of modulation instability tends
to zero. The appearance of large-scale vortex disturbances as a result
of modulation instability leads to the appearance of shear flows and deforms
the convective structure on large scales. The equation, describing the evolution
of the instability spectra has the following form:

N
) 2
bj = bj _ZVYI‘j |bz | bj + ZW]mmbzbnbm (234)
J

i,n,m

where the interaction coefficients are determined by the relations below V=1,

—

& s the angle between the vectors k. and k ; [22-4],

P}=(2[ﬂ(1—2(£§}f):(2/3“ﬂ+2cos29),

Wjinm = (];l X I;n Xl;m X lgl{ k2 - kz (k2 - k2)2 :ISE ]€i+l€n+l€m .

(k +k

It can be shown that under the conditions of symmetry of the resulting
perturbations, the equations for the main modes of convective cells (each of which
has an amplitude equal to b) and for the fastest growing modes of the spectrum
b, (in the mode when the rest of the spectrum is suppressed as a result of the
above competition mechanisms) of modulation instability have the form

b=>b(1-b>—-4b2), (23.5)
: 2
b,=b,1-b*-b3)+—"—b%b,0(s,), 23.6
a =by( 7) s (&,) (23.6)

where the occurrence of the modulation instability threshold is qualitatively
described using the theta function #(&,). When the threshold of modulation

instability 1s exceeded, as a result of its development, the amplitudes of the
primary structure modes decrease from values comparable with unity to values

boo2 =20/ 2772, while the amplitudes of the main growing modes of the
spectra reach values b, =1/2 (l—bi)l/ %, The intensity (i.e., magnitude)
of the primary structure /= )| bki \2 without the occurrence of modulation

instability (when the primary structure is stable) and the intensity of the
defective structure, which is the result of the development of this instability, are
equal. The defectiveness of the developed structure is equal to &, .

The effect of a regular hydrodynamic dynamo. The interaction between
the modes that determine the modulation (distributed defect modes) and the
modes of the main structure is due to the existence of large-scale vortices, the
streamlines of which in the configuration space can be represented as
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Y = ggzbz [cos(log) — cos(lon)] , (23.7)

where, the ratio of the characteristic linear size of the large-scale vortices Ly
and the linear size of the convective cell Lc is equal to L, /L ~(bes,)”. The

occurrence of such large-scale vortices is one of the possible realizations of the
hydrodynamic dynamo effect [23-2, 23-3].

Thus, in case of modulation instability of a system of developed
convective cells, not only does a self-similar structure occur — convective cells
of different scales [23-6], but a large-scale poloidal vortex is formed as well
[23-2 —23-4].
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ANNEXI
TRADITIONAL THRESHOLD
OF INDUCED RADIATION

Let us consider the system of equations (1.1) — (1.3), define the concept
of inversion 4 =(n, —n,)and find the integrals of the system

N, +n, =Const (1.1)
n, + n, = Const (1.2)

where we shall get

ON,
E =u,, - 4N, =u, (2N, (0)+n,(0)—n,(0)-2N,)-N, . (1.3)

At low field intensities Nk is
ON

atk =U,y - K 'Nk :u21[n2(0)_n1(0)]'Nk :7'Nk (1.4)

In case of the positive population inversion (4, >0), we shall find an

increase in the number of field quanta N, at the initial stage oc exp{y -t} with an
increment, which is equal to . Then the increase in intensity slows down due
to adecrease in the level of inversion. In instability saturation we have
Ny = N (0)+ u(0)/2.
In case of finite absorption of quantum energy in the system
ON,
ot (1.5)

here 6 is the decrement of absorption of the field energy. Typically, losses in
active media are due to the removal of radiation from the cavity (resonator) volume.
These losses can be correctly set by defining the boundary conditions for the field.
However, they can be described approximately in a fairly general way as

oo 1 - - dwe(@,k)] 1 , = =
5:5D:§[§S£._E><H-ds/q‘_9$ — 87Z(|E|2+|H\2)dv, (1.6)

==0 Ny +uy - - Ny,

4

that is, in the case under consideration, the flux of electromagnetic energy
through the mirrors should be divided by the field energy contained in the
resonator. It is important that the value equal to the product of the characteristic

time of the change in the field {6|}£7?|2 /|E|2 ot} in the resonator by the group
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velocity of oscillations |8a)/él€| is significantly larger than the size L of the
resonator. Under these conditions, in theoretical calculations and estimates it is
quite possible to substitute losses by mirrors with distributed losses. The traditional
instability threshold is determined by the condition

> o =0 Uy, . (1.7)

When approaching the instability threshold, the noise level grows, and when
the threshold is exceeded, the process of increasing the number of quanta can
become exponential.

ANNEX I
SPONTANEOUS AND INDUCED
RADIATION OF THE ELECTRON BEAM. LANDAU DAMPING.
EQUATIONS OF KINETIC INSTABILITY OF
A HOT ELECTRON BEAM IN PLASMA

Let the beam particles emit and absorb plasmons with energy 7w (k) .
In the case of a spontaneous process, the number of quanta emitted per unit time

in the wave number interval dk (thereby changing state m to state n) is equal to
N, A, dk | for induced radiation process it is equal to N, B'E, dk.The number

of absorbed quanta under the same conditions is equal to N,B'E,dk. Then,
for the number of particles in state m, that is N, and the number of particles

in state n, N

n

we can write equations ypaBHeHus

ON

8tm dk:—NmA,’;dk—NmBr’;EkkorNnB;"Ekdk, (11.1)

aN n n m
8tn dk =+N, A'dk+ N B'E dk—- N, B"E dk, (11.2)
where E, and N (k)= hz—ﬁkEk are the energy density and the number of quanta

10
in this wave number interval, respectively. Here in the one-dimensional case
1
A" = — ho(k)-B", B" = B"
272_ m n

For the electron charge density p=—e-0(v-t—z+s), from the Poisson
equation we shall obtain the value of the Fourier transform of the electric field

. O(w—kv) .
E(((),k) =8ﬁ2l€mexp{_1ks}, (”3)

b

where s(w,k) =s(w)=1-w,, | o(w+iv,), ®, =+|4we’n,/m, V,; is the frequency
of collisions of electrons with ions, which is assumed to be insignificant. Performing
the inverse transformation
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E(z,t)=(27)" [ do- exp{-io-t}| dk - E(w,k)-exp{iks}

let us find the value of the electric field

dk z—8
E(z,t) =2ie| ——exp{—ikv(t —
(z,1) fkg(kv,k) pi—ikv( )} (I1.4)
The drag force of a particle by the radiation field is
1
F=—1/|\F(k)-dk,
27[[ (k) (11.5)

where F(k)=4r-ie’ /[ke(kv,k)]. From here let us obtain the spectral intensity of

spontaneous emission of one particle
w (k) =Re{dr-ie* -v/[ke(kv,k)]} =Re{27x-ie” V[ r 1 I} =

pe

=2’ @, - 6(kv—w,,) | I,
that is, for a spontaneous process, the relation holds
N A -ho(k)=4r’e’ [0’ (k)/k ] fb[a)(k)/k] For N(k) which is determi-

ned from the relation E = Idk E, ——Idk ‘N(k)-ho(k), the equation takes
the form
al\ggk) ={N, A" +N B'E —-N B"E, } (11.7)

Then for a homogeneous beam with a velocity distribution function f(v,),
let us obtain the relation

(N,—N,))/N, = (hk/m)-af(v)/f(vm)dvhm <<1, (11.8)
where v = w(k)/k.
If the velocity distribution function of the beam f(v,) has the form
Sy =1y /\/;"Tb] -expi{—(v - "01;)2 /Vib} , (11.9)

where v ;v ;n,, are average velocity, heat velocity and density of beam particles
correspondently, then the equation (I1.7) takes the form (2.7)

dE, | dt =27’ [0 (k)1 K] f,[o(k) ] k]-
AL+ N (hk | m)af, () ] f,(@(k) 1 K)oVt =28, -E, = (I110)
=2y, {E, + @(K)T, / [kvy, — @(k)]} - 25, -E,,

k kv, — (k)]
where 7/L — (\/_/2) a)b CO( ) Xp{—[ ob - az)( )]
K’ va kv,

increment of beam-plasma instability in the absence of energy loss (0 =0)
of plasmons w(k) ~ w,, =+/4me’n, /m .

tLkvy, — (k)] is the linear
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The relationship between the energy density E and the electric
field  strength of plasmons E, is determined by the ratio

owe(w, k) ) a);e 2 . . ,
i =——— | E, ' —F——[ E, |". It is not difficult to obtain the Landau
87 -0w 4w (k)

damping decrement [lI-1] for the Maxwell plasma [see also damping decrement for

electrons from the non-Maxwell plasma [lI-2] obtained by A. A. Vlasov somewhat

before) for plasmons whose phase velocity is noticeably higher than the thermal

velocity plasma. In this case, the role of the particle beam can be played by the

high-energy part — the “tail” of the Maxwellian distribution of plasma electrons, and

the dispersion characteristics are determined by the bulk of the plasma electrons.
The equation for the spectral intensity of plasmons neglecting spontaneous

processes takes the form:

dE, /dt=-20,-E, (1.11)
where the value of the Landau damping decrement is

_ o (k) w’ (k)
o, ——\/;'%3 5 CXp - KL iy (1.12)

Te

v, =+/T,/m, a Te is the temperature of plasma electrons. In connection with

the intensive development of nonlinear physics in distributed systems and media,
the main attention is traditionally paid to induced self-consistent processes.

The system of equations that describes the behavior of the field of a plasma
wave excited by a beam, for example, (11.7), can be written as

ORe[w - e(w)] L, _aEk +Iml[w-¢(w)]|, E, =
ow °© Ot 0

drewm, Of,(v) ik Av,, (11.13)
= k, ° gv ‘v:a)o/ko 'j_”/ko dé, 'J‘_Avm dAv,-Av-Cos k.S + @},
ORe[w- g(w)] ] -5(P_Ek _Re[w-£()]], -E, =
ow ¢ ot 0
_Arew, of,(v) (11.14)

"R g " dAv - Av-Sinfk
a k() av |V=w0/k0 .J‘ﬂ/ko go .moc IAvm VO . v . ln{ 05 + ¢}’

where E=x—vt, Av=v—y,, n,, = jﬁ)(")’d"a Av, oc 67|y |/k,, initial conditions are

&=Et=0c(—x/ky,m/ k) n Av,=Av(t=0)c(-Av, ,Av ). Whence it is easy to obtain
equations (2.12) — (2.13).

However, the consideration of spontaneous processes in the general
dynamics of the development of many physical phenomena is often necessary
to elucidate the role of the intrinsic noise of systems, especially near the threshold
of instabilities. This will allow us to adjust our understanding of the dynamics
of nonequilibrium processes.
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ANNEX 1l
ON SPONTANEQOUS AND INDUCED WAVE RADIATION

The Fourier image of the current at the combination frequency @, +a@; can
be written as

Jo (@, k) = (hy + k)”Oe RLLY:

2 5k~ ky —ky) (111)
where for {E,E,}, you can use the view of

1
’ Afm‘/;

here A, is the spectral width of the packet at the combination frequency,

{E,E ), ={E,E;} expi—(o— o, —(03)2 /A2923},

E. = E |exp{p} is the slowly varying complex amplitude of the i-th wave. For the
field accompanying this current, the expression is
ie(k +k ) {EE ) QF

2

E Jk, + k)=
n (@6 k) ma) w,0.& (0, k, + k)

S(k—k,—ky), (N2)

Qz Qz

~=0, Q,and v, are the Fourier transformation of the

S
dielectric constant, the ion plasma frequency, and the speed of sound, respectively.
Applying the Borel theorem, let us find the work of the field on the current and after
the inverse transformation this expression will take the form:

2 2
EQ* D =—i| — | W, W§i[l ia)expy—i(m — @, — @)t — Bon)” . (.3)
my, REOXON 4
In order to obtain (lI.3), it is necessary to use the relation
1 @ k2 :
=——+ir-—{5(w-w)+5(0+w)} (I11.4)

we(w,k, +k,) 30,0, 2Q2
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: L . 1 oe ) Q’
in addition, the following concepts were used: W, = 8—601 a—|E1 "’=2
@

is the density of vibrational energy at a frequency W,

2
2 |E1|

W,

A ,,=(-0+0,+0,)=300,0,/2Q] is the frequency detuning due
3w,0,0, 1
| 2Q12 AQ23
A,y 2 @, —w, —m,, under these conditions, & is the order of unity. Under
conditions of insignificant detuning A not exceeding the spectral width of wave

to dispersion, and a=rx \/_exp{—(a)l —w, —®,)" | Nax since

-1,2,3
packets for sound waves, current (l11.1) is able to excite a field at a frequency ,
due to the presence of resonance &(w,,k, +k;)=0. For small detunings, the

change in the field energy at the frequency @, due to the current at the
combination frequency can be presented as

8 @,
(E(z) *]g) E s DN

Py (I11.5)

l

It should be noted that the sign of expression (III.5) does not depend on the
waves involved in the interaction, which corresponds to the process of oscillation
generation (radiation). Such sign-definiteness is characteristic of spontaneous

processes. In addition, radiation at a frequency @,, is caused by extraneous
sources (here, waves are at frequencies @, and @, ) with respect to a wave at
the same frequency, which is also characteristic of spontaneous processes.
Therefore, such generation with respect to a wave at a frequency @, has the

properties of spontaneous processes.

Obviously, with large detunings in the spectral range of interacting modes,
the radiation (l11.5) is exponentially small. For the vibrational energy at a frequency,
the following equation [llI-1] is true:

2 * 2 '
wm_ 8 e @E%_RexfeEzEsE S| glemh i B e
a 3\my) oo mmy.@@, 3\ my, 2aag ag\6 o

This equation can be written for the number of quanta per unit volume
N, =W, /ha).

M _ o e N,N, RM i { NlNl+aNl(N2+N3)}_ (11.7)
ER 3 my, Tmhv.w,o,0 3 my, ) (2

The same equation can be written for the slow phase of oscillations at
a frequency @, :

% 2
N8B e |y HEEE 8 {1MNI—NI<N2+N3>}. (11.8)
o 6\my mivoog 6\my, ) (2

\
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The first term on the right-hand side of each of equations (111.7) and (l11.8)
corresponds to spontaneous effects, the second term determines the interaction of
all three waves, and the third term determines the induced effects of self-interaction

(oc le ) and cross-modulation, which can be obtained by direct calculations.
Let us note that the coefficient, preceding the product of the number of
quanta in equations (I1l.7) and (I11.8) is equal to 7e’ /(m.v,)*, can be represented

in the form of a,-w- X -k, where ¢, =ez/hvph is the analog of the fine structure

constant for the case when the phase velocity V,, =V, and the quantity X, =%/m,-v,,

are formally similar to the Compton wavelength for V,;, =V scattering by ion.

On the description of self-interaction processes. The term oc le in the

right-hand sides of (Ill.6) — (lll.8) describes the result of self-action and,
which is noteworthy, can also be formally obtained. For a current at

combination frequencies 2a)1 — o, (it can be shown that the drag current

makes a significantly smaller contribution than the account of perturbations
at the second harmonic), we can write

Jrw—o GOE®,, , (X,1) = —%-NZwNw(z' +a'), (11.9)

QA 0%

is of the order of unity. Similarly, let us write the procedure for obtaining the
nonlinear term for self-action

1 3af )
where the numerical coefficient a—>a'=3~4ﬂ£ Jexp —(ﬁJ /N,
923\/7_2-

= @V + DN, =D =Ny, N, ]-Ny = =D NP+, (1110)

(because N,, << N, ), the value of which can also be obtained by direct
calculation. But since the magnitude of the current at combination frequencies

2w, — w, is determined by values of a higher order of smallness in terms of

the amplitudes of oscillations, in this case it is more correct to focus on direct
calculations of the terms responsible for the effects of self-action. Similar
calculation schemes were actively used by many authors (see, [llI-2] and
the literature there) to describe wave interactions. However, it should be noted
that the application of such operations in the framework of developed
phenomenologies, in most cases very successful, can distort the physical
meaning of individual elements of the description and should be based on direct
calculations. In the absence of detuning, the first term on the right-hand side
of (111.6) is responsible for the radiation at a frequency generated only by the
combination interaction of two waves with frequencies @, and @, . The

second term on the right-hand side of (Il.6) defines the well-known collective
process of interaction of all three waves. The account of the spontaneous
generation process described by the first term of the right-hand side of (111.6),
which can be called spontaneous, provides not only the formation of a certain
level of fluctuations in the system, but also can significantly affect the dynamics
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of multi-wave interaction (similar to the phenomena discussed in [lll- 3, 11I-4]).
In particular, the increasing noise level can smooth out amplitude oscillations
and equalize the intensity levels of interacting waves, as well as the effect of
random phase disturbances [llI-5, IlI-6]. In the homogeneous case, for suf-

ficiently large detuning A values, exceeding the spectral width of the waves
involved in the interaction, the first term of the right-hand side is negligible, i.e.,
the effectiveness of such a spontaneous interaction of waves is weakened.
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ANNEX IV
ON THE NATURE OF MOSSBAUER EFFECT

Let us consider the HF oscillator-emitter, trapped in the potential well, which
interacts with an external field [IV-1]. Let us show, when the recoil energy during
the act of absorption or emission of a field quantum is equal to 7€) (where Q) is
the LF frequency of the oscillatory motion in the potential well), the emission and
absorption lines at the HF oscillator-emitter are of the highest intensity, the
frequencies of these intense lines are equal to each other and do not differ from the
frequency of the resting oscillator-emitter.

Let us discuss the oscillator emission process with an eigenfrequency @, ,
charge and mass equal to e,m,, that oscillates in a potential well oriented along

the OZ axis. The vector of the emitted electromagnetic wave is also oriented in the
same direction.
Let there be an HF oscillator at the origin of coordinates whose velocity is

vV, =V ,Cosat = awm,cosm,t . Slow oscillations of such an oscillator in a potential
well occur in speed v, =bC2cos(£X), in this case (2<< @,. The conservation laws
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during the absorption of a quantum E =7(w,+€2) of an external field by an
oscillator with a rest mass m, and charge e have the form 7(w, +Q)/c = mV,,
_ 2
hQ=my, /2
Under conditions « =%, / m,c® <<1, the motion of the oscillator along the

OZ axis is described by the equation z = bsin Q¢ , where Q = v, /b . In this
case, an important relation is fulfilled [IV-2]

wb/c=kb=2. (IV.1)

The vector potential of the external field has components

A :q(t)-x/E-Cos{kz+5}, A4,=0, A4 =0. The phase O depends on the

orientation of the oscillator. The choice of type 4, is determined by normalization

conditions, so that the integral of the square of the vector potential in a unit volume
is equal to unity, and the quantity q(t) satisfies the equation g + a)zq =0, where

@ and k = (0,0,k) is frequency and the wave vector of the electromagnetic field.

The total energy of the field in the volume V' is equal to U=V (¢’ +w’q’)/8xc’

where we can determine the effective mass of the field oscillator m,; =V / 4z’

The interaction energy of the oscillator with an external field is H'=—e-v 4 /c
The vector potential at the point where there is an oscillator is

A= V2 q, exp{i(x )t +ikbsin QU } - Cos{o} =2 qOCos{é}ZJm (kb)exp{i(wx= Ot +imkY},

where V, =V, - COSOyl is the oscillator speed.

The resonance conditions require that the frequency in the rest frame of the
oscillator be equal to, @, that is @€+ m = @,. The upper sign corresponds
to radiation, the lower one corresponds to the absorption of an external quantum.
Indeed, at b=0 and m=0, the frequency of the external field during emission of
a quantum is equal to @ = @, —Q and the frequency of the external field during
absorptionis @ =), +Q

If b#0, the system "oscillator in a potential well" is an infinite set
of oscillators (see [IV-1], [IV-3]) with an amplitude and frequency
~J, (kb)-expliw,t +imQ} , of which we will be interested only in those that

correspond to the values m==1. Thus, in the system there are m energy levels,

transitions to each of which can be carried out independently.
In this case, attention should be paid to the change in frequency during recoil

k-t_ljtdt (dV, /dt) =xkV, /2 ==2Q in the rest system of the particle-oscillator.

In the classical model, the time interval of the momentum and energy transfer to the
particle-oscillator is quite long, in the quantum case this process is considered
instantaneous. That is, the interaction leads to a change in frequency precisely
by an amount Q .
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We can make sure that only for the values of the external field frequency
@ =(—mF1)Q+aw, the expression for the interaction energy of the oscillator with
the field turns out to be nonzero and can be represented as

€V

H'=—e-v A, /c=—""2q 2.3 J (kb)-cosS (IV.2)

c

Let us note that for an oscillator at rest =0, in expression (IV.2), only one
member of m =0 series is nonzero. Thus, the frequency of the absorbed radiation
@ = w, +€2 differs from the frequency of the emitted w=a,—€2 by 2Q , which

corresponds to the difference in the energies of the absorbed and emitted quanta
in two recoil energies.

When b # 0 in case of trapped quantum @+ m€) = @, +€2, which determi-
nes the value m =1 at the frequency of external radiation®=®,. In case of
quantum radiation, an oscillator trapped in a potential well is @+mQ=aw,—-Q
which determines the value m = —1 at the frequency of external radiation @ =@, .
ltis easy to see that when the ratio @b/c=kb~2 is fulfilled, the radiation and
absorption at the natural frequency of the oscillator @, are the most intense

(e. J2(kb)|,,=J (kD) |,y >> JC (kD) |yes )- To do this, let us represent the
matrix element as

H,==2(e/c) @ Xy Gy Jo (kb)-c0OSS |

Two oscillator states are a,b, which are indicated by lower indices, and the

indices n,n' correspond to two states of the radiated (n,n+1) or absorbed
2

1

(n,n—1) field. Moreover, for the case of absorption | G |2:| q,.n |2:” | 4,

and for the case of radiation |¢,. =g, '=(m+1)]q,[’., where

| G0, |2= he? /Vw, and the mass value My =V /4nc* are used. For the square
of the matrix element, |et us obtain the expression
2e° he? n+1
|H, = o, (x2, + yjb)-7jf(kb)-cos2 5-{ 0 (IV.3)

where the upper value corresponds to radiation (let us restrict to the case n=0),
and the lower value corresponds to absorption (we set n=1). The transition
probability can be found by multiplying by 47°p(w,)/h, where p(@,) is the
density of oscillations in the frequency range and let us take into account that
when averaging over the initial phases (cos’>d) =1/2

B 47*

_ | |2 8re’
if hZ if

=@, F +1yy ) Ji(kb)-Cos’s . (V.4)
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Let us note that the probability of absorption at a frequency @, £ can be
obtained by replacing J.(kb) in (IV.3) by J;(kb). The intensity along the OZ
direction can be obtained by multiplying (IV.3) by #e,, and the total intensity

in al directions by integrating along the corner @ = k~OZ

It is easy to see that in case of an oscillator in a potential well with the
frequency €2 and amplitude of oscillations b , since J. (kb) >> J;(kb) the
intensity of the absorption and emission lines at the natural frequency of the oscillator

@, is almost an order of magnitude higher than the intensity of the emission lines
at the frequency @, — €2 and absorption at the frequency o, +Q [IV-1].

Let us also note that the nature of the high-frequency oscillator, whose
vibrational energy in the potential well is equal to the recoil energy, does not affect
the nature of the radiation and absorption under discussion at its natural frequency.

Let us mention that when radiation is at the angle of §, ~50° and when
JP(kb-Cos,) = J;(kb-Cosb,) , the radiation intensities at the natural frequency

@, and at the combination frequency @, —<Q are compared, which makes it

possible to experimentally verify this theory?'.

Thus, the nature of the Mossbauer effect can be quite simply explained by
the peculiarities of radiation of atoms with an excited nucleus oscillating in potential
wells of the crystal structure.

The relaxation processes of LF excitations in continuous media. If the
system discussed above is in the medium, then the possibility of low-frequency

quantum radiation Q = @, (hw, / 2m,c*) should be considered.
The relatively low velocity acquired by the oscillator as a result of recoil

v, >>c(ha, / 2mocz) often turns out to be noticeably lower than the phase velocity

of phonons. This makes it impossible to directly transfer the kinetic energy of the
recoil to the phonon. This is also evidenced by the inability to comply with the laws
of conservation of energy and momentum. The lifetime of such a low-frequency
oscillator should be estimated. If the lifetime of the low frequency oscillator turns out
to be noticeably longer than the period of oscillations in the potential well, then the
radiation and absorption mechanisms of the isolated system “oscillator — potential
well “ discussed here are also applicable to the case when such a system is in the
medium. In other words, relaxation processes, involving the phonon spectrum,
in this case can be neglected. In the three-dimensional case, the characteristic

relaxation time of the LF motion [IV-1] of the order z,, ~3(p, A’/ m, )@,/ 7°Q) is
proportional to a very large parameter poﬂf / m, . This parameter is equal to the

ratio of the mass of atoms ,00/133 in a three-dimensional cube, whose side is equal

to the wavelength of sound /1S , to the mass of one atom m,, . It is also proportional

! There is a fundamental possibility of the refutability of this consideration, that is, Popper's criterion is fulfilled.
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to the large parameter @, / Q). In this case, the lifetime of the HF oscillator may be

much less than the relaxation time of the LF motion due to sound radiation [IV-3].
Effect of jitter of a potential well. It can also be shown [IV-1, [IV-4] that the
account of fast oscillations-jitter (caused by the action of energetic phonons of the

medium) of a potential well with frequency @, and amplitude b , for which
inequalites b;w; > b>Q?, are valid leads to a decrease in the amplitude of the

vector potential 4 and the interaction energy H', reduces the transition probability
by a factor exp{-W /2} :(l—bf /b*) . In this case, the probability of transition (1V.3)

is decreased by exp{—W} times.

Similarly, the presence of a relatively high-frequency phonon spectrum of the
environment will affect the transition probability. In the case of a sufficiently wide
spectrum of oscillations of the potential well, the decrease in the transition

probability exp{-W}=(1-b" -Zibf) will be insignificant if the energy conditions

b’ << Y. bw! and deviation amplitudes b” >> > b’ are satisfied.

So, for example, the absorption of °” Fe and ' Sn by the nuclei of gamma
rays of 14.4 keV and 23.8 keV, respectively, according to the expression
a)Ob/czZ leads to atomic oscillations in the potential well of the crystal with

ranges (double amplitude) equal to 0,55-10° cm. and 0,33-10"° cm.

The relaxation time of such an oscillatory motion of iron and tin atoms due to
sound generation is defined above about 0.1 and 0.01 seconds, respectively, which
is many orders of magnitude longer than the lifetime of an excited atomic nucleus.
The above estimates of the attenuation of line intensities ~exp{-#} remain

valid even for Debye temperatures (for example, for iron 90246701{,
Ogpx =~ kO, /h~10", b >> Zibiz ).
The process of radiation and absorption at the natural frequency of the

nucleus @, is largely determined by the presence of a significant number of atoms,

oscillating in the potential wells of the crystal, both with excited and non-excited
nuclei. The source of atoms with an excited nucleus, which oscillate in a potential

well (at a frequency (2 ) at the initial moment, is external radiation with a frequency
@, + <2, the number of quanta of which G,EH comes from the outside per unit time.

Obviously, regardless of the fact of excitation of the atomic nucleus, which vibrates
in a potential well in the presence of an external field, the system of low-energy
levels remains the same. In the work [IV-2] it was shown that the number of quanta

at the natural frequency @, of the nucleus at the developed stage of the process
exceeds the number of quanta at the frequency @, +€) with respect to

(Wy 1y, /8,)>1. Here O, is the decrement of the field energy absorption by the

medium, w,,, -1, is the rate of change in the number of excited nuclei due to the

induced absorption of a quantum at a frequency @), + Q) by previously quiescent
atoms with unexcited nuclei whose equilibrium density is equal to 7.
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ANNEX V
DENSITY MATRIX AND EQUATIONS
OF THE SEMI-CLASSICAL MODEL

Let us consider a density matrix whose elements for a two-level system
are (see, for example, [V-1]) o, + P, =1 and p,=p*,. where P, is the relative

population of the upper level. For simplicity of description, we shall restrict ourselves to
the one-dimensional case. Matrix elements of interaction (dipole approximation) are

V =—d-E . Let us define d,, as the projection of the dipole moment on the
direction of polarization of the electric field and P = N(d ,p,, +d,,p,,) is written as
the polarization of N identical molecules, — Q2=2d, A/h is the Rabi frequency.

The following equations are valid, where spontaneous emission is not taken into
account

d . 1 i

pra +(iw,, +?2)pba = _% Via (Paa = Po )5 (V.1)
— (P =P ¥ =P =) =P s =P =+ — VP =PV s (v.2)

dt 1 h
Vi =V =d, [AQ)-expicion + A% (1) -explion); (V)

where E = A(t)-exp{—iwt} + A*(t) expliwt}

dP d d

Obviously E =N, pra +d,, Epab) (V.4)

assuming @,, =—@,, =@ V*,=—d*, E=V, :_dbaE, P¥ i =P, A% =4y,
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let us write (V.1) in the form
d

_ 1 l
pra =—(iw,, +F2)pba = Ve (Proa = Ps) » (V.5)
L =0+ 2P~V 4 (0= 1) v.6)
dtpab ab ]; pab h ab pbb IOaa ’ '
then
1 dP d d ) 1
N; = dab ztpba +dba Eloab = la)(dabpba _dbapab)_z(dabpba +dbapab ) (V7)
You can use y,, =1/T, as the width of the spectral line.
_ 2i 2 dP
Since T <VaPur = PodVa >= hoN <EE> from equation (V.2) we shall
obtain
d 1 0 0 2 dP
— — +— — — — =——<—FE>
7 (Pua = Po) T [P = P3) = (P s = P 1) roN - di (V.8)

1

or if we determine the population inversion u = N(p, —p,,), then (V.8) can be
rewritten as it follows:

du 2 dP
+— =—<—FE>
i T (ﬂ Hy) = o (V.9)
Differentiating equation (V.7) we shall obtain
d’P _ i
e = _ZCUN (db —d ,py,) =—ioNd, [-(iw,, + )Ioab 7 Vab (L = P~
2

. . I
_dab (_l a)N)[_(l a)ba + _)pba T I/ba (paa - Iobb )] -
7,

. . ) l
= (_le)[(_la)dbapab _la)dabpba)_%l/abdba (pbb paa)+ I/badab (paa pbb )] =

—*P - 2io(- %)N( p.. —py)d,d E,

I e.
2
%+a)P 2w|d, [ Eulh . (V.10)
If we add the equation
0°E 0E , 0°E 0°P
o T T e T T o (V1)

to (V.9) and (V.10), where O is the decrement of field absorption in the medium,
we shall obtain the equations of the semi classical model (V.9) — (V.11) used
in [V-2].
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ANNEX VI
CALCULATION OF PARAMETERS OF PULSES
OF INDUCED RADIATION

Calculation of pulse parameters of a quantum source [VI-1]. Let us show
how the parameters of the pulses of the induced radiation were determined
depending on the degree of approach to the threshold (5.8). Let us assume that the

total number of states N =n, +n, =10", in this case a threshold inversion is
o, =N =10°. Let us evaluate the transition to a single time scale according to
the relation 7' =17 - M, , where T is the time in each individual case.

The initial values are determined by M(T =0)=M (T =0)=1 and
N, (T=0)=N, /u,=3-10"/u,, also N (T=0)=N_/u,=3-10"/p,, in
addition N,(T =0)=N, / g, =3-10*/ i, . The absorption of field energy is taken

into account by the value 6 =06/ pu,, where O is the decrement of field

absorption in the medium. In the absence of loss or absorption of quantum energy,
the calculation results for different values of the initial inversion are presented
in Table VI.1. The pulse size and its shape were determined by its half-width [VI-1].

Table VI.1

Ne i N, N, - 4, Half width Half width Rear to
6 AT (A7 = AT | ) Front
x10 %1076 Ratio

Az, /At
1 J2-10° 0.053 0.075 3.352 2.37 1.04
2 2:10° 0.083 0.166 4.743 2.37 1.08
3 J10-10° 0.204 0.645 7.716 2.44 1.55
4 J20-10° 0.318 1.422 12.46 2.78 2.46
5 J50-10° 0.415 2.934 27.26 3.85 5.34
6 107 0.454 4.540 52.30 5.23 9.88
7 J2:10 0.475 6.716 102.5 7.25 17.6
8 2:10’ 0.487 9.740 202.8 10.1 31.7
9 V10107 0.494 15.62 503.3 15.9 71.4
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calculation results are given in Table VI.2.
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In case of fixed absorption, corresponding to the values § =4-10°, the

Table VI.2

Ne m N, N, -y, | Half width Half width Rear to
%10° AT (A =AT / ) Front
%10 Ratio

Az, /At
1 V2100 0.034 0.048 3.036 2.15 1.28
2 2.10° 0.046 0.092 4.554 2.28 1.05
3 J10-10° 0.12 0.38 6.641 2.1 1.23
4 | 20-10° 0.211 0.94 8.348 1.87 1.63
5 J50-10° 0.33 2.33 12.396 1.75 2.64
6 10 0.382 3.82 17.14 1.71 3.64
7 V2107 0.418 5.91 24.35 1.72 5.14
8 210 0.441 8.82 34.28 1.71 7.19
9 | J10-107 0.462 14.6 54.77 1.73 10.9

Periodic changes in the luminosity of Cepheid stars. As noted above in
Section 6, IV, can describe the generation of induced radiation, for example, in the

photosphere of stars, which is a pulse with a certain constant component.
In addition, there is a spontaneous incoherent component of the same source. To
this radiation, it is necessary to attach the constant radiation of the rest of the
heated material of the star, i.e. the total emission of the star takes the form

N(z)=N, +N,(7) (VI-1)

The value of the constant component N, (the spontaneous incoherent
component of a quantum source and the constant radiation of the rest of the
warmed matter of the star) must be added to NV, . This addition can be estimated
by knowing the relation between the maximum and minimum luminosity of a star
k=(N,+ N, )/ (N, +N,,), on the other hand, the ratio of the maximum and
minimum luminosities of a star is k = L, / L, =10%*">"™) [V|-3], here m is the

apparent magnitude at the maximum luminosity of the star, m, is the minimum
luminosity.

Below let us focus on the values of the apparent magnitude obtained from
observations. From the known apparent magnitude m , knowing the distance to

the star in parsec d, we can calculate the luminosity L
m=M,y, +5lg(d /10)-2.51g(L) (VI-2)
To compare the luminosities of stars, the absolute magnitude (visible magnitude
from a distance of 10 parsecs) M, =m—>51g(d /10) is also often used, here d is the

distance in parsecs to the star, d =273 for the Cephei delta and d =133 is for the
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North Star. Then the luminosity of the star in units of luminosity of the Sun is equal
to L =10
of the Sun.

To obtain the dependence of the luminosity of the star on time L(7), let us
multiply (VI-1) by the coefficient A, i.e.

L(z)=A4-N(r)=A-[N, +N,(7)] (VI-3)
_ LZ
N, +N,_

2 min

L, =1, where M, =4.77 is the absolute magnitude

Ll
N, +N

Table VI.3 shows the calculation results for the Cepheus delta and the North
Star. For this, the values of table 6.1 (section 6) from the first and fifth rows are taken.

where 4 =

2 max

Table VI.3
Table VI
ations my ms kK | Nowin] Nomax | Now| N, A L* L,*
delta

348 | 437 | 227 | 4 20,188| 10 | 8.748 | 84.507 | 2445.3| 1077.3
Cepheus

Polar star {2.092|2.125|1.031|9.635|10,374| 10 | 14.315|84.412| 2084 | 2021.6
* calculated by the formula (VI-3)

You can make sure that the average value L is determined by the ratio
L=A4-(N,, +N,). (VI-4)

Fig. VI.1 a, b shows the time dependence of the number of quanta and the
corresponding luminosity of the Cepheus delta and the North Star. The bottom
curve is the number of quanta of induced radiation. The upper curve takes into
account the constant component of spontaneous emission due to other elements of
the radiation source, in addition to the quantum system.

N L N ~L
i 2100
2000 27 |
20 -
" 26 L J2000
1000
10 ) S .. -850
i 4800
0 0 9 ! 1 1
0 0.5 1 L5 T 0 0.5 1 1.5 T
a b

Fig. VI.1. Dependence on time of the relative number
of quanta (left scale) and the corresponding luminosity (right scale)
of the Cephei delta (a) and the North Star (b)

The lower curve on each fragment represents the number of quanta of
induced radiation. The upper curve takes into account the constant component of
spontaneous emission due to other elements of the radiation source, in addition to
the quantum system.
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Figures VI.2 and V1.3 below show the change in the stellar magnitude of the
star of the Cepheus delta [VI-4] and the North Star [VI-5] over time. The ordinate
shows the values of the apparent magnitude, the abscissa shows time in fractions
of the period of change in the brightness of the star.

m
16| / N ;f\
igl

40
12l Vi J
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Fig. VI.2. The change in the stellar magnitude
of the star of the Cepheus delta over time. (solid curve was obtained
in the 1930s by N.F. Florey using a visual photometer) see, for example [VI.-6]
and the solution of the equations of system (6.10) — (6.11) in the same variables,
when selecting spontaneous emission level and scale (dotted line)

mg

a0 M
pam |

a1+

Fig. VI.3. The change in the magnitude
of the North Star over time (solid curve) and the solution of the equations
of the system (6.10) — (6.11) in the same variables when selecting the level
of spontaneous emission and scales (dashed line)

A similar layer with an active medium, which can be described by a quantum
two-level system located near equilibrium, can exist in stars and is most likely
localized in the photosphere. If there is significant convection in the star atmosphere,
conditions can be accomplished to generate pulses of induced radiation. It turns out
that the similarity of the obtained solutions with well-known observations of changes
in the luminosity of Cepheid stars (Cepheus delta and the North Star) can be seen.
In this case, according to table 6.1 the ratio of periods of change in luminosity
is also similar (accurate to 2.5 %).

It is important to note that the solutions of equations (6.10) — (6.11) for these
two cases are located on the same diagram in Fig. 6.3, which corresponds to one
type of object. As well as small amplitude Cepheids (DCEPS) of the North Star
type, they belong to the class of classical Cepheids, the brightest representative
of which is the Cepheus delta.
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ANNEX VII
EQUATIONS OF TURBULENT WAVE INSTABILITY

Using the results of Section 1, let us obtain a system of equations of
turbulent-wave instability similar to (7.2) in a somewhat simplified form for greater
clarity. Let us consider the perturbation introduced by an ion-sound wave with an

amplitude E_ and frequency Q) = Kc_, propagating in plasma into the distribution
function of the electron beam

el 0
f1 =1 s fo ) (VILL1)
m(Q— Kv) ov
If the unperturbed distribution function is Maxwellian

|, =11y, /x/;va]-exp{—(v—va)2 /vib}, then it is easy to show that
fi = QieE, | Kvyv,,m) f,, respectively of, / ov=(2ieE, / Kvyv,,m)-0of,/0v, then
equation (2.7) takes the form

i4y,eE ieE
OE, /0t=2(y,~0p)E, — 70¢%s g e ES-Ek+Q-(1—le—S),(V||.2)

Kvyvy,m & ~ Me, VoVyp M

where the source of spontaneous emission in the absence of a

wave is Q=27¢[w’ /k’]-f,, the increment of beam instability is
27w _ _ _

V= m—kzafo (v)/0v]|,_,, ,and the third term on the right-hand side of (VII.2)

is responsible for the drift of the energy of the rf turbulence in the field of the ion-

sound wave in the plasma with the velocity V, = —ieE / M Q, where M is ion

mass and ¢, =+/I.,/ M is the speed of sound.
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From the equation for perturbations of plasma density in the fields of RF
turbulence (see section 20)

Ozn_cz o’n 1 O EP
o> ' ox* 16xM ox*
using the relation p = +eanS / M -c_, let us obtain equations for a slow change

in the amplitude of the ion-sound wave
OE K

o Ben E,, (VII.4)

(VI1.3)

where the energy density is represented as
E, =E,,(t)+E, -exp{~iQ¢ +iKx} + E, - exp{iQt — iKx} =

=B, [W, () + W, - exp{—~iQ +iKx} + W -exp{iQt —ikx}]. - VII)
The system of equations (VI.2) (VI.4) can be written as
oW, | 0t =—g, - W, +ic(A W, = A-W, )= WA W, + A-W, ) +q, (VI1.6)
oW, /0t =—¢, - W, +2iaA-W,-244-W,, (VIL.7)
0A /0t =—uW, . (VI1.8)
using the following notation T=0,t, 2(y,—0,)=—¢&,0,,

q=Q/E0,, #=KE, /8enp§D | Eg .
Thus, up to certain numerical coefficients it is not difficult to obtain a similar

system of equations, describing the interaction of turbulence with an LF wave that
can change the degree of deviation from the instability threshold.

ANNEX VIII
SPATIAL AND TEMPORARY DYNAMICS
OF INSTABILITY DURING A THREE-WAVE INTERACTION

The system of equations (7.2), which describes the decay of the pump field
into two waves, can be represented as a single equation

0 0., 0 0
{(E"'Vl a)(a"’vz g"'é‘z)_alaz}Al,z =0 (VII.1)

To obtain the solution (VIII.1) with some initial conditions in the domain

—00< X <0 on the interval 0 <t <o, we shall use the Fourier transforms in the
coordinate and the Laplace transform in time

A(Q,K) = sz : exp(iQt)T dx A (t,x) - exp(~iKx) (VIII.2)

To obtain the Fourier component of the wave amplitude, let us use the equation
DL(QvK)Az(QaK) :[(Q_Kvl)(Q_sz +i1/2)+0(10£2]-Ai(Q,K) :Aio(K) (VIIL.3)
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where 4,(K) are the functions determined by the initial conditions:
AJszéLIAAK)@mMQ)dK (VII.4)
T —0

In this case, in a moving with speed V reference frame (& = x —Vt,t),

v, <V <y, the dispersion equation D(€2,K) for perturbations of the form

~exp{—iQt +iK £} that corresponds to the system of equations (VII.1) under the
accepted assumptions will have the following form

D(€Q,K)=(Q-Ky, +KV)(Q+KV -Kv, +iv,) + a,a,. (VIIL5)
Obviously the dispersion equation in a laboratory frame of reference is
DQK)|,_=D, (K). (VIIL6)

Performing the inverse transformation, we shall find

Al.(t,x)— 10( ) exp{ iQt+iKE} = _[df G, (&-S&"1)-4,(£,0),

—00

exp{ iQt+iK &}
D(Q.K)

form of which does not depend on the initial conditions, but is determined only by

the properties of the system. The integration loop C, is parallel to the axis

where G,(&,t) = is the Green's function, the

ReQ2=0 and is above all the features of the integrand. Closing it in the lower
half-plane (2 we shall get

i exp{—iQ (K)-t+iK&}
G0 =3 [ R X TG w0k

(VIIL7)

where Dé[Qn(K),K]:a%D(Q,KHQ:Q"(K) and Q=0 (K) are the roots of the

dispersion equation D(€2,K) =0
If ImQ (K)<O0 is for all branches of oscillations, then the system is stable.

If ImQ (K)>0 is for any root, then we should expect the development

of instability, although the type of instability remains undefined. For the case of the
interaction of two waves (VII.1), there are only two roots:

w-V -V 1-6 V-v
Q, =\aa, [-1-0—"——] Q,=foaq [-2 2
1 =N, oWy v, BN 12[vl_v2 i “_%L (VIIL.8)

Generally speaking, the integral can be calculated using the residue theorem.
To do this, let us supplement the integration loop with an arc of infinitely large

radius. For large values of |K |,QK)—>K(y—-V) and Q,(K)—>K(v,-V), it is
possible to close the circuit only at ImQ _(K)<0. Then (y—V)>0 and (v,—})>0
will have to close the circuit in the lower half-plane, and for (v, —1)<0 and (v,—/)<0,

respectively, in the upper half-plane of the complex variable K. The roots under
these conditions are in the inner region covered by the contour. You can make sure
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that in any single area there is lim G(&,,t) — 0. That is, under these conditions,
t— 0

absolute instability is not realized.

If v, <V <, itis impossible to use the residue theorem, because the

integral over the arc of a large radius diverges. Therefore, the integral should be
calculated in another way, for example, by the saddle-point method.
The perturbation, which is the envelope of the oscillation field, is proportional

to exp{—-iQQ,t}, where Q, is the value of the root of the dispersion equation
D(Q,K) =0, corresponding to the instability at the point, where the derivative
vanishes 0Q /oK . Pass points determined from the equation

0Q /0K [5 g x)0= 0 (VIIL9)

are also the branch points of the function 2 =Q (K), in addition this is a condition
for the development of instability under which the group envelope velocity vanishes
oD(Q,K) oD(Q,K)

Vg =0Q /0K |D(Q’K):0: —[ oK ] |D(Q,K):O /[ 20

] |D(Q,K):0: 0. (VI11.10)

ANNEX IX
SPACE-TEMPORAL DEVELOPMENT OF BEAM
INSTABILITY IN PLASMA

Let us show that if the /7 speed of the reference frame we have chosen

does not fall into the velocity range V, < V <v,, at least at a low absorption level,

then absolute instability in this reference frame does not occur. An integral of type
(VIIL.7) can be calculated, using the residue theorem. We shall supplement, as
before, the integration contour with an arc of an infinitely large radius. When

| K [=> o Q(K)—>K(y,—-V) and Q,(K)—>K(v,-V), since you can close the
circuit only if ImQ, (K) <0, then (v —F)>0 and (v, —V)>0 will close the circuit in

the lower half-plane, and when (v,—})<0 and (vg—V)<O, respectively, in the

upper half-plane of the complex variable. The integral in this case is equal to the
sum of the residues of the integrand in the region covered by the contour. To find
the sum of these residues, let us solve the equations together

a%D(Q’K) =0 and D(Q,K)=0,

as a result, we shall find Hangem
_isw-V) | [2(v, = V)= (v, = V)]

Q,= y exp{27zni/3}, 1X.1
Ve ™V ' 3(Vg — V) ( )
K, = i0 + 7 expizi/ 3} exp{2zni/3}. (1X.2)
v, =V, 3(vy =)
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Let us choose from the roots n =0;1;2 those ones that are in the inner

region. In all cases when ¢t >0, G(&,t) — 0, thatis (v, —V)(v, -¥)>0, only
convective instability can develop.
Obviously (v, =V )(v, —=V) <0, using the residue theorem is impossible

due to the divergence of an integral of the form (IX.7), which nevertheless can be
calculated by the saddle-point method. The envelope of the oscillation field, in case

of instability, grows proportionally to exp {—i€Q,¢} , where QO is the value of the
root of the dispersion equation D(€2,K) =0, at the point where the derivative

0Q2/ 0K vanishes. Thus, the saddle points (9.7) and (9.8), which ensures the
growth of the field, can be determined using equations (9.6) and

0Q/ K | 0= 0, (VIIL.3)

ANNEX X
MULTIMODE INTERACTION OF A NON-RELATIVISTIC
ELECTRON BEAM WITH PLASMA

The equation for the description of the process of interaction between a beam
and plasma can be represented as

%E+4E{JL+Jb}:O, (X.1)

where J, is the plasma current linear in the perturbation amplitudes and J, is the

beam current. Since the phase velocity of the beam significantly exceeds the
thermal velocity of plasma particles, equation (X.1) can be represented as

: 0 0
la)g(pkOOVbO’ pkOb)EOp + _a)g(wﬂk) |a):pk00vbo (_EOp - 5 ) EOp) =
ow k=pky ot
L2 (X.2)
= +4ren,, T J dx,v, exp{ipk,,(x —v,,t)dx,

-L/2
where ¢(w,k)=1- a);e / ®® and § is the linear decrement of absorption of
vibrational energy p=1,2,3...P,a)ﬁe:47ze2n0/meo, n,, n, are unperturbed

plasma and beam densities, e is the electron charge, m , is rest mass, V, is the
beam electron velocity, and at the initial moment the beam is assumed to be

monoenergetic V, | _,=V,,, PokooVos =w,,, integration in (X.2) is carried out

over initial positions of the beam particles x|_=x,. Obviously, here k, is the

interval between the modes of the spatial spectrum. The electric field of long-
wave perturbations, whose phase velocity coincides with the beam velocity, has
the form
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E =" E, expi—ipky(x—vy,t}, (X.3)

p>0

where &(pky, vy, pky) =1-@, | (pkyvy,)’ =1-py / p*, o ms(wk) |m,,kmv =l+p /P,
The equations of motion of particles, simulating a beam can be represented as
dx,

7 v, (X4)
—b = _Re Z exp{ ipky[x —v,1)] (X.5)

Let us also give the total Iong-wave field excited by the beam, acting on the
plasma particles

E,explio, t} = E, |explio, ! +if} = ZEOp eXP{ipkog Vo, — iPky X} =

p
Do Do (X.6)
~ Y E,, explipky vt} = DI E,, |explipkygve,t + i, ,},
Prmin Pmin

where we shall neglect the deviations pkyAx~Ax/A,<<1, where 4, is the
characteristic wavelength of the intense Langmuir oscillations excited by the beam,
and disturbances whose frequency differs markedly from the Langmuir frequency.
The amplitude of the long-wavelength Langmuir oscillations excited by the electron
beam turns out to be equal to

|E, |= \/[Z |E,, |-Cos{py YT+ | Ey, |- Sin{e, 3T, (X7)

Pmin Pmin

and for the phase @, the equation is

. 8¢0 _c Pmax Op S £ C a(p(')p B
| E, | o OS{¢0}Z[ Zn{(pop}+| Op| 0S{¢Op} Py ]
pmm
. (X.8)
Ry Op | . ! agDOp
_Sln{¢o}z [ COS{(”OP} |E0p ‘Sln{¢0p} Py I,
Pmin
where such expressions are used %,, =0y, T (PkyVep — @ e)f,
Pmax
Cos{d,} = ﬁ Z |E,, |-Cos{p,,}, (X.9)
Pmax
Sin{g,} = ﬁ D IE,, |-Sin{p,,}. (X.10)

pmm

Neglecting the nonlinearity of the plasma, the system of equations (X.2) — (X.5)
describes the excitation by a beam of nonrelativistic electrons of long-wave oscillations.
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It can be shown that under these conditions the relation is satisfied, which is the
integral of the system of equations (X.2) — (X.5)

_ 1 2 t ' n 2 k
; 4”RP{IE0,,I —egdr | By (O F )+ mgvymg =2 [ v, = Const, (x11)

7l kg

=7/ kgq

ws(w, k)| =R

o=mkyyvyy p
k=mkg,

where

ANNEX XI
DISSIPATIVE GENERATION MODE IN A RESONATOR
FILLED WITH AN ACTIVE MEDIUM

For local variables Ej, Pj and M,, truncated equations of the semiclassical
description model are valid (see Section 4)

oP, |
or +I,P, =-IME, (X1.1)

6Mj i . .
or _E[Eij -E, Pj], (X1.2)

2 . ‘ 1o
where E (7) = (\/;)- |E(7) | -Sln{27[§+ a} EZ(M’ +M*)=M
Jj=l
For the number of field quanta, the equation (conservation law) can be
written as

oM +8<E(r)>2
20T or

It should be noted that the case I';, >1 corresponds to low levels of electric
field intensity or small values of population inversion. In contrast, with the opposite
inequality I';, <1, the radiation intensities and population inversions are very
significant.

Let us consider the solutions of the system (XI.1), (XI.2), and (XI.3), using the
following notation

NE =< TN,@), MO =T M, (0), E,0)= 2N(r)-Sin(27r§j. (X1.4)

+2®<E(T) >2=0 (X|3)

Under the conditions let us set N(0)=0.001 M(0)=1 S=100, I',, = 0 . In this

case, let us discuss the effect of external field energy absorption, for example, due
to energy output (® = 0).

Here the following notation are used: =M
QEd, || By | /h=Sd,, [ {4mo 14/ 7/7]1/2 is the Rabi frequency corresponding to the value
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of the amplitude of the electric field | E, |=[47hou,]"” E=E()/[4rhau,]"?,
P =4xwP(t)/ Q) [4nhou]”  t=Qt, T, =7, /Q,, ©=6/Q,.
Let us imagine the time dependence of N at different absorption levels ®, and

also consider the change in the linear increment of the process dN/ Ndz | as well
as the maximum attainable relative field intensity N,,, and the maximum energy

flux from the system ®@-N, . as functions of ®, which are responsible for the
energy output from the waveguide [XI-1].

N Ny ON

0.15
1

0.1

0.5
0.05

a b

Fig. X1 .1. a). Dependence of N on time for different ©.
1-0=0;2-0=0.053-0=0.1,4— ©=0.2; b) Linear increment

of the process is 7 = dN / Ndt , maximum achievable field intensity is N,y , as well as
maximum energy flux from the system ©-N,,,. as a function of ©. 1 — Ny ; 2 — Vimax
3— O-N,,,. In all cases, the line width is negligible 15=0.1

ON

0.15

0.1

0.05

Fig. X1.2. a). Dependence of N on time for different .
1-0=0;2-0=0.053-0=0.1,4— ©=0.2; b) Linear increment
of the process is y =dN / Ndt , maximum achievable field intensity is N, , as well as

maximum energy flux from the system ©-N,,,. as a function of ©. 1 — N,y : 2 — Vimax;
3- O-N,,,. In all cases, the line width is defined by expression 12=0.1
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ON

0.8 0.06

0.6 0.04

0.4

0.02
0.2

0 0.2 0.4 0.6 0.8 ®
a b

Fig. Xl 3. a). Dependence of N on time for different 6.
1-0=0;2-0=0.05 3-0=0.1,4— ®=0.2; b) Linear increment
of the process is y =dN / Ndt , maximum achievable field intensity is N, , as well as

maximum energy flux from the system ©-N,,,. as a function of @. 1 — Ny 1 2 = Vimax:
3- 0O-N,,,. Inall cases, the line width is defined by expression 1,=0.5

A feature of the solutions of
system (XI.1) — (X1.3) for large values
of ® (when the energy is efficiently
removed from the system) is the
presence of only one field maximum.
It is possible due to a rapid decrease
in the inversion level in the wave-
guide. In fig. XI.4. the diagram of the
maximum field amplitude as a func-
tion oftwo variables ® and [y, is
presented: Fig. X1.4. Dependence of Npyax on @ and 12
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ANNEX XiI
CAVITONS, FORMED IN THE PLASMA
RESONANCE REGION

The phenomenon of electromagnetic field conversion in the region of plasma
resonance in the inhomogeneous region at the plasma boundary leads to the
transfer of part of the external field energy to short-wave Langmuir oscillations,
propagating in the direction of decreasing plasma density [XII-1] — [XII-3]. In this
section, let us restrict to the consideration of only one-dimensional case, since we
will only be interested in the consequences of the formation of cavitons and their
influence on the course of relaxation processes.
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It was found in [XII-4] — [XII-7] that the nonlinear damping decrement of
electromagnetic oscillations due to absorption of their energy (conversion to other
types of oscillations) in the plasma resonance region with an increase in the
intensity of the electromagnetic field decreases inversely with its amplitude. As an
illustration of this position, let us consider the attenuation of a surface wave at
a difftuse boundary of homogeneous plasma (the field of which penetrates into
plasma to a depth substantially exceeding the size of the boundary inhomogeneity).

In an inhomogeneous region in the vicinity of plasma resonance, short-wave
plasma oscillations are excited, the group velocity of which is directed toward the
plasma boundary. This process leads to a partial conversion of the surface wave
to plasma oscillations. So, in particular, the linear decrement of oscillations
of a surface wave propagating along the blurred plasma boundary — the vacuum
due to this conversion, has the form [XII-8, XII-9] (see also [XII-10]

0; =(nk,w/4)(de/ dx) |w=wpe : (XIL.1)

In this case, the X axis is oriented along the inhomogeneity of the plasma,
and the Z axis lies in the plane parallel to the plasma surface, ¢ =1 — a)ze (x)/ w?

is the dielectric constant of the plasma. Other designations are generally accepted.
The presence of the conversion of an external field or a surface wave field into
longitudinal plasma oscillations in the plasma resonance region allows correctly
describing the process of field penetration into strongly inhomogeneous plasma
with a finite temperature (a linear theory is presented in [Xll-11]). The envelope of
Langmuir oscillations excited near the plasma resonance obeys the equation [XII-12]:

i0A/ 0T + 0% A/0E* + A| AP =ay +ay *(E—io), (XI1.2)
where 7 =wt/2[a, (kyx,) "1, &=2a;"(k,x,)[(2x/x,)-1], v, =T /m,,
ky=w/\6v,, o=, 1loa!®)k,x,)", E isthe amplitude of the surface wave.

Let us consider the condition «, <<1 to be fulfilled. Let us select the solution
in the form of [XII-13.]:

a2

2 .
A=a,ch™ j%(g ~v)expli(+ Vz)r + ;v(éj ey (XI3)

This is an exact solution to equation (XI1.2), where &, =0 [XII-14]. Under
the conditions «,, <<1, the inclusion of the right-hand side of (X.2) leads to a slow

change in the amplitude @, and velocity V of the perturbation, similar to how

it was done for hydrodynamic solutions [XIl -13]. The effect of inhomogeneity on the
behavior of the plasma wave field was also previously discussed in [XII-15]

At the initial moment 7 <[2/7z’a,]", there is a linear growth of the
caviton “sliding” to the plasma boundary (and an increase in its velocity)
a = mo, T,V = —0513\,/22' which is replaced by an oscillating regime (energy exchange

between the caviton and the surface wave field). Dividing the average energy flux
of the Langmuir wave by the energy of the surface wave, we shall obtain

Sy =0, (ay 12°%). (XI1.4)



PART II. Annexes ~ 193 ~

That is, the decrement is inversely a | v
proportional to the amplitude of the field t
of the electromagnetic wave. In addition, '
nonlinear attenuation is less than linear.
It should be noted that the use of a
stationary description of the behavior
ofthe mean field near the plasma
resonance also gives a decrease in
energy absorption inversely with the
amplitude of the external penetrating
radiation [XII-16] — [XII-18].

In case of a nonlinear theory, Fig. Xll.1. The linear growth of a caviton
intense radiation can change the  “sliding”to the plasma boundary is replaced
conditions for the penetration of a field by an exchange of energy between the
into plasma. Penetration into plasma, the caviton and the surface wave field

density of which n,, slightly exceeds the critical value n_ :afmeo /dre®, of

sufficiently powerful radiation when its amplitude exceeds a certain threshold value
[XII-19] can also be accompanied by the formation of cavitons - regions with a
reduced plasma density filled with plasma oscillations. A similar problem was also
considered later in [XII-20]. It was shown that at sufficiently high intensities of the
external field, the forming cavitons periodically arise and move deep into the plasma.
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ANNEX X1l
ATTENUATION OF A WAVE PACKAGE IN A RESONATOR
FILLED WITH AN ACTIVE MEDIUM

Let us consider attenuation processes of wave packets of finite amplitude
in bounded systems that impose a possible set of wavelengths of such packets
and form the spatial field structure in waveguides.The waveguide is filled with
an active two-level medium (a system of dipoles). For description it is possible
touse a semiclassical model of the interaction of the field and particles
(see, for example, [XIII-1]).

In this case, the quantum-mechanical description of the medium is combined
with the classical representation of the field. In this approach, the Rabi frequency
plays an important role, which determines the probabilities of induced radiation or
absorption of field quanta [XIlI-2, XllI-3] and the oscillatory change in population
inversion (nutation). Depending on the relation between the values of the Rabi

frequency Q =|d_, || E(¢)|/h (where d, and E are the dipole moment of the

ab|
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particle and the amplitude of the electric field, respectively) and the line width 7,

of the wave packet, the process can change the nature of the field behavior. Here,
the line width is inversely proportional to the lifetime of states (the lifetime of energy
levels), which is due to relaxation processes.

For local variables E; P, and M, the truncated equations of the

semiclassical description model are valid (see Section 4)

oP, |
5, Theb; =—iMiE, (XI11.1)

oM

or

. 1 N
where E,(7) = (/<) | E()|-Sin{2r Loap 52 M, +MH=M
j1

For the number of field quanta, one can write the equation (conservation law)

oM  0<E(r)>’ )
281+ P +20< E(r)>"=0 (XIII..3)

Let us recall that the case [',, > 1 corresponds to low levels of electric field

i
/ =S[E;P,*=E,*P,] (X111.2)

intensity or small values of population inversion. In contrast, with the opposite
inequality I',, <1, the radiation intensities and population inversions are very

significant. Let us consider the solutions of the system (XIII.1), (XIII.2), (XI11.3) using
the following notation:

wl =M O Hd,|-|E|/hdd,| 4w 14/7]” is Rabi frequency cor-

responding to the value of the amplitude of the electric field | £, |= [47[7%60,{10]”2 ,

E=E@t)/[Axhaw,]” P =4rwP(t)/ Q[4rhou,]"? 7=Q T,=7,/9Q,, and

| . '
N(T)=§ZN,-(T), M(r)=%ZMj(T), E ()= 2N(T)-Sm(27féj L (XI11.4)

Let us discuss the effect of line width I',, on the nature of wave absorption

by active particles. External mechanisms of energy absorption will not be
considered ([XI11-4])).

Results of numerical simulation. Let us use equations (XIII.1) — (XIlI.4) for
calculations. Below, the initial conditions NO = 1.45, MO = -1, S = 100, ® = 0 are
used. Attention should be paid to the oscillations caused by the interference of the
processes of induced radiation and absorption of field quanta in different parts
of the waveguide (see Fig. Xlll 1.). The nature of this phenomenon was discussed
in Section 5 (see also[XIII-4])

The population inversion oscillation frequency corresponds to the Rabi
frequency and is proportional to the electric field in this local region. It turns out
in our case with different line widths over time N —0.95, In this case M —0,
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With an increase in the line width, the field intensity oscillations (the number
of quanta) and population inversions weaken (see Fig. Xlll 2.)

N N

M M
1 \_/\NM- 1 \M— 0.95

-1

0 5 10 15 T 0 5 10 15 T
Fig. XlII.1. The behavior of the relative Fig. Xlll.2. The behavior of the relative
number of quanta (bold line) and relative number of quanta (bold line) and relative
population inversion (thin line) over time population inversion (thin line) over time
with a negligible line width T1,=0 with a small line width 1= 0.25
In case of a sufficiently large

line width, the regime for changing the
095 field intensity (number of quanta) and

population inversion becomes mono-
. tonic (see Fig. XllI-3.)

N
lﬁ This monotonic change in the
0 5

N
M
1

10 15 R number of quanta and the population
. _ _ inversion of a two-level system in the
Fig. Xl11.3. The behavior of the relative presence of an electric field is charac-

number of quanta (bold line) and the relative  igristic of the case of the description

population inversion (thin line) over time of the process by balanced equations.

with the line width I'12= 3 It is in?portant t)c/) note that ?he finite

width of the wave packet is able to suppress the interference of population

inversion sections oscillating with different local Rabi frequencies in the field
of a standing waveguide wave.
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ANNEX XIV
ATTENUATION OF A WAVE PACKAGE IN A RESONATOR
FILLED WITH NON-ISOTHERMAL PLASMA

The line width of the wave packet can be defined as result of dissipative
processes (in a quantum system this is the reciprocal of the lifetime of energy
levels) or as consequence of reactive processes of wave packet formation
(in classical waveguide systems this is the spectral width of the packet).

When considering the field damping in plasma (Landau damping by
electrons), the role of population inversion is taken by the quantity

p=n,—n = f(v,+hk/m)— f(vo)z(hk/m)-@‘(v)/ﬁwv% , where f(V) is the velocity

distribution function of electrons, 7,,7, are the number of electrons whose velocity

is less or greater than the phase velocity of the wave [XIV-1, XIV-2]. In this case,
it is the final spectral width of the wave packet that can affect the character of the
velocity distribution of particles. With a large packet width, as is well known from
[XIV-3], the so-called quasilinear relaxation process can be observed, which leads
to the formation of a “plateau” on the particle distribution function in the velocity space.

By the way, here the role of the Rabi frequency is played by the oscillation

frequency of the trapped particles in the potential well of the field Q,_ =./ekE /m,
(here e,m, are the charge and mass of the electron, and k is the wave number

of oscillations, v, = w/ k is the phase velocity of the wave). If the spectral width of

the packet is small Ak-v,, =~ Aw <<, the process of wave attenuation acquires a

characteristic oscillatory form, associated with the exchange of energy between the
wave and plasma electrons captured by its field. In the case of the reverse inequality,
an almost monotonous character of the field attenuation is observed with the formation
of a characteristic “plateau” in the vicinity of the phase velocity of the wave on the
electron velocity distribution function, corresponding to the state with zero population
inversion in this case presented in the form x = (7k /m)-of (v)/ov|,_, =0.

Let us consider the process of attenuation of plasma (Langmuir) waves on
plasma electrons. Electrons effectively interact with the wave, moving at a speed
V close to the phase velocity of the wave packet. For simplicity, let us restrict
ourselves to the one-dimensional case [XIV-4] (see also [XIV-5]). It follows from the
materials of Section 2 that the complex equation for the field, which describes the

process of induced absorption of the plasma wave field by plasma electrons, can
be written as

O(we) OF, e E 4rew of
Ow Ot " k ov

vﬂl

wlk
b [ d& [ vidv explik,E+ip)  (xIv.1)

-k —V,,

where & =x—vyt Av=v-—v, n, =If0(v)dv’ Av, oc67z|7/|/k0, and the
initial conditions are
& =¢t=0c(—x/ky,n/ky) yw Avy =Av(t=0)c (-Av,,Av, ).
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Results of numerical simulation [XIV.6]. For calculations, let us use the
equations already for the wave packet

8A 0.5 +n
—-+i(n=n)4, =87 [ a&|dn-n-expi-27ni&} (XIV.2)
T 05 -
0°& J 77
27 - P —Re[z A, -exp{2nri&}] (XIV.3)
T 3

where the modes of the wave packet are 4 =| 4 |exp{ig,} , the main wave is
nm, =5, the satellites are n =3;4;6;7 under the following initial conditions:
As = 1.0 — the amplitude of the main wave, the amplitudes of the satellites are
A; = A; = 0.2; A, = As = 0.7, and the number of particles is 5000, & < (0,1)

dé& kx
and 7 2 dr’é: 27
Let us study the behavior of the
15 wave packet in time by changing the
sum of the squares of the modules
) ofall amplitudes |A.?. This value

0 1 2 3 4 T 7 2

determines the intensity / = Z‘An

Fig. XIV.1. The behavior over time and =3

intensity of wave | in a single mode of the resulting wave of our package.
I In the single-mode mode (the case
of a narrow line width of the wave
packet — one mode is 7, =35

2 . . . . .
oscillation of the wave intensity is
observed. This initial wave attenuation
. mode is known as Landau atte-
70 1 2 T nuation. In the design scheme, the
Fig. XIV.2. The behavior of the intensity of ~ Intensity of the monochromatic wave
wave | over time for the wave packet is [ = ‘A5| I = ‘A5| . In the deve-

loped regime, the process acquires a nonlinear character with weakly damped field
oscillations (see Fig. XIV. 4).

For the packet (A3 = A; = 0.2; As =1.0; A, = As = 0.7), a decrease
in the intensity of the wave packet is observed, associated with the energy
exchange between the field and the plasma electrons captured by the wave
(see Fig. XIV.2).

The electron distribution function in the vicinity of the phase wave velocity
f(n) for different time instants for wave packets with different line widths is
presented below. In the single mode, the distribution function changes strongly
during oscillations of the wave amplitude (see Fig. XIV.3).
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Fig. XIV.3. The electron distribution function in the vicinity
of the wave phase velocity f (n) for time instants T = 0; 3; 4 in single mode
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Attenuation of the packet leads to the formation of a stable state of the
electron velocity distribution function with a practically zero velocity derivative near
the phase velocity of the packet (see Fig. XIV.4)

o)
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0.1

0.05
0

f(n)
0.15
0.1

0.05

\

0.0l -0.005 0 0.005 "

/\

0
-0.01 -0.005 0 0.005 7

J)

0.15
0.1

0.05
0

-0.0

1 -0.005 0 0.005 n

Fig. XIV.4. The distribution function of electrons in the vicinity of the phase velocity
of the wave for time instants 1 = 0; 2; 5 in case of attenuation of the wave packet
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In case of a small spectral width of the packet Ak-vph ~Aw<<Q, _, the process

of wave attenuation acquires a characteristic oscillatory form associated with the
exchange of energy between the wave and plasma electrons captured by its field. In
the case of the reverse inequality, the field attenuation is monotonous with the
formation of a characteristic “plateau” in the vicinity of the phase velocity of the wave
on the electron velocity distribution function corresponding to the state with zero

population inversion, which is presented in this case = (fik/m)-of (v)/ov |v:v0 =0.
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ANNEX XV
WAKE FIELD OF AN ELECTRON BUNCH,
MOVING IN PLASMA

To obtain the wake field of a bunch, we needed to find the wake field of an
individual particle. It is important to note that if we consider an infinite periodic
arrangement of individual particles, as it is often done, and then increase the period
indefinitely, the transition to the wake field of an individual particle of a bunch will be
difficult. Let us draw attention to the fact that in the periodic system the field is
present both in front and behind an individual particle. As for a single particle, the
radiation field in front of it in the direction of its motion is absent.

To obtain the correct result, a different method of calculating the wake field of an
individual particle is needed. Let us imagine the charge density of an electron moving

with speed v > 0 in the following form p=—e-O0(—v-t+x—s)=—e-0(& —5).
We shall use the Poisson equation 0D/ 0x =0¢E / Ox =4mp , which we can write in
the Fourier representation in the form [XV-1]

—ike(w, k) - E(w,k)=4no(w,k) (XV.1)
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Performing the inverse transformation of the left side of the equation, we shall
obtain

y: de(k)

~i [ exp{-ik&}-dk [k - s(k)- E(k)] = k, OEC)

J ok b o
Here we took advantage of the fact that the wave packet is located
in the space of wave vectors near k, and then d(k,+ K)=dK, in addition

-exp{-ik,S}. (XV.2)

0

E(&) = J.exp{—ich}-dK -E(K) is the amplitude of the electric field strength

slowly \_/O;rying in space. Let us also use the fact that the equation
s(w,k) =e(kv,k) =e(k) =1-, / k(kv+iv) =0 has the roots k,v=ky=1m, —iv/2

in the moving frame of reference. The Poisson equation in this case takes the
form:

(OE(E) 1 0E) - exp{—ik &} = ~4me-{k, -0e(k) /1 Ok |, ¥ 8(E~s), (XV.3)

moreover, in this case the relation k,-de(k)/0k |, =odwe(w)/dw]|,, , holds.
Note that it was not necessary to transform the right-hand side of (XV.1) at all. For
further transformation of equation (XV.3), he will use the representation
0(x)=d6O(x)/dx, where 8(x) is the symmetric unit function, which is equal to

zero at x <0, and is equal to unity at x> 0. Given the presence of the delta
function, equation (XV.3) can be represented as

OE(E)/0E =a-8(E—s), (XV.4)

where o =—4ze-{k,-0&(k)/ Ok |, 2" exp{ik,s} . We are looking for a solution
in the form E=C+a-0(&—s), where C is the indefinite constant. Since the field
strength has the form

E(S)-expi-ikyc} =[C+a-0(c —s)]-expi~ikyc}, (XV.5)

then in the region of large values £ > 0 the expression tends to infinity, which

is unacceptable. Therefore, you should choose C = —¢ . Thus, the final field
strength of the wake of a particle moving in the positive direction is

E(S)=—4ne-{k,-Oc(k)/ Ok |, A O(s = &) -expliky(s— &)} . (XV.6)

It is not difficult to see that, with appropriate normalization, the sum of such
spontaneous fields of particles is represented by expression (12.3).

On the applicability of the description. It is important to note that the field
(XI1.6) describes the total field of an individual particle in plasma. That is, the
Coulomb field of a previously resting particle during its motion was transfor-
med precisely into this field. Therefore, summing up all such fields of the
bunch particles, we obtain the total bunch field, which can be represented as
the sum of the field, accompanying the bunch and the radiation field lagging
behind the bunch [XV-2]. It is the accompanying field — this is the eigenfield
of the bunch or the inverse Coulomb field of the bunch — that focuses
the bunch. Equation (XV.4) is obtained for a uniformly moving charge.
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More rigorous calculations [XI-3] make it possible to obtain a similar formula
for the charge field with an arbitrary law of motion 7 = 7, (x) :

E=E0[t—t (x)]expliow, (-1, (x))]. (XV.7)

Here is the so-called Lagrangian time, i.e. the time of particle arrival at a point
(in the laboratory reference frame). Expression (XV.7) has a transparent
physical meaning: a particle flying through a point excites a longitudinal field
with amplitude. Subsequently, the field at this point of the cold plasma oscillates
with the plasma frequency and does not depend on the subsequent evolution of
the particle. It is important to emphasize that the phase of the field created by
the charge at a point depends only on the difference between the current time
and the time of flight of the charge through this point. In the case of uniform
motion of the charge, expressions (XV.6) and (XV.7) are equivalent, since ,
where and are the current coordinate of the particle in the laboratory frame of
reference and the frame of reference associated with the particle, respectively.
From this it is easy to obtain an estimate of the applicability of expression (XV.6)
to use it in a self-consistent model of excitation of a wake field by a bunch,
taking into account the uneven motion of the particles of the bunch due to the
influence of a self-consistent field:

PPy _Pr| Yo | 1_M zﬂATV<<1, (XV.8)
2z 27| v(t,x) 27 Vo 2z v

where @, =@, (t—1,(x)), @, =k, (X(£)—x), V(t,x)=(x(t)—x)/(t—1,(x)), and
Av(x,t) are the average velocity and variation of the particle velocity in the

region [x,x (f )] , respectively. Thus, the equation for the field (XV.6) and the

resulting model (11.2) — (11.3) have certain limitations. The applicability of these
equations is limited by the spatial (or time) domain in which the velocity variation
is negligible compared to the initial velocity of the bunch (in most applications it
can be considered close to the speed of light). Let us clarify the limits of
applicability of model (12.2) — (12.3) in the dimensionless units we have
adopted. We will proceed from a more rigorous model [XV-3.], using Lagrangian
time. The equation for the Lagrangian time has the form in the above notation:

dr,,(9) _ A

- ) XV
dE 1+Av,(©) o)
to which the equation of motion should be added:
1+A-v,, \dv,, (&)
“ LSS = B .
( A j e (S,7) (XV.10)

and the equation for the field
E(¢,7)= —%Zfa cos[w, (7 =7, (E)]-O(r —7,,(5)).  (XV.11)

Here 7,,(&) is the time when the particle with the number ¢ passes through

the point & V,,(&) is its speed at this moment. Integrating equation (XV.9)
in the 5 interval [f,fa] we shall obtain:
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Sa
f(O=1-A [

ém . (XV.12)

To close this equation, we need to know V,,($). Considering that in a
laboratory reference system a particle travels very quickly over a distance

[659 fa] (with a speed of about Aﬁl), it can be assumed that in this interval its
velocity varies slightly and, therefore, the value VLa(f) can be expanded

in a series with §a —f respect to the current position of the particle:

dv, B A dv, .
VLa(§)~Va+ dé: (5 5a)+_va+1+AVa d'Z' (é éa)+(XV13)
substituting this expansion in (XI.12), we shall obtain
Y LV R L
()= §1+A' " ~ 5 W -+ (XV.14)

It is easy to show that if we keep only the linear term §a —65 in the

obtained expression and substitute it in (XV.11), then we will get equation
(XV.5). The difference arises when terms of a higher order are taken into
account. This implies the applicability condition for equation (XV.5). Based
on the requirement that the quadratic term is small

dv

¢ —¢&) <<l (XV.15)

we shall obtain the boundary of the spatial domain of applicability of the
model in question [XV-2.]

1
—N(A-A-v
5 ( )

(XV.16)

Since it is always ‘E‘ < 2, but for relativistic bunches it is A <<1, we can

assume that the simplified model we have proposed is applicable in a fairly
wide spatial domain and can be used in practical calculations. The

applicability limits of the model can be defined as it follows: if even ‘E‘ =2,

then for A=0, é* —> —0 s equivalent to an infinite beam velocity,

because the beam velocity in the selected units is proportional to Aﬁl, for
A=0.1, £*=-31 is the most problematic case, for A=0.01,

&*~ —1000 . The model (12.2) — (12.3) proposed in this paper has an

important advantage compared to the more rigorous model [XI-3] from the
point of view of computational resources, since it contains only time-
dependent equations, and the model [XV-3] is a more complex spatio-
temporal problem. There are other features of model (12.2) — (12.3) that
make its use preferable in studying the dynamics of beams with a relatively
low density, the consideration of which allows us to use a linear description
of the perturbations of the surrounding plasma.
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First of all, you can ignore the magnetic field created by the beam current,
because the currents in the rest system of the beam-bunch are negligible.
Moreover, all disturbances in the system can be considered potential, ignoring
electromagnetic effects, which is unacceptable when describing the dyna-
mics of moving bunches of charged patrticles in a laboratory frame of reference.
This circumstance becomes even more important in the transition to three-
dimensional modeling [XV-4] — [XV-6].
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ANNEX XVI
SUPERRADIANCE MODE OF OSCILLATOR SYSTEM

Fields of a single particle and particle bunch. Let us consider the mode of
superradiance when the cavity field or the waveguide field are absent. You can also
determine the total radiation field of the oscillators in the same volume. First, let us
find the field of one oscillator. For slowly changing amplitude of radiation field £ in
space the equation is

a(f" = 2—7[-e-az-a)-exp{Jrit//irikz}-&(irzizo) =A-0(xzFz,)). (XVIL1)
74 c

Its solution is £ =C+A-U(z—z,), where U(z<0)=0, U(z>0)=1.Since

for the wave emitted by the oscillator, the equation is D(w, k) = (a)zgo —k*)=0 ,
which roots are &, =*(w,Reg, /c)(1+ilmeg; /Regy) = (@, / cg))(1+i0), then for
the wave propagating in the direction z >z, the wave number £ = k&, > 0 and



PART Il. Annexes ~ 205 ~

constant value C should be chosen equal to zero, in order to avoid unlimited
growth of the field at infinity. For a wave propagating in the direction z <z, the

wave number is k=k, <0, the value of a constant should be chosen equal to —A
for the same reasons. The amplitude of the electric field in

E. =2reawM ¢ exp{—iwt + iy} [expiik(z—z,)-U(z—z,)+
+expi{-ik(z—z,)-U(z-2z,)}

where U(z)=1 at z>0 and U(z) =0 at z<O0, F or one particle in such a volume

(XVI.2)

of unit cross section and cavity lengthis b, M is numerically equal to unity.
We can represent the equations of motion in the form

AV i =—CE ()
° m (XVI1.3)

where

x(H)=i-a -exp{—iax +iy} =id-exp{—iat}, Vv, =w-a, -exp{—iax+iy}=wA-exp{-iat}
The equation of motion for an oscillating electron has the form (XVII.3).
Using the above notation, let us write (XVI.3) in the form

A, |34
124
dt 4¢° /

, (XV1.4)
_ meM e M 1 ZA ( ik(z; - )'U(Zj_zs)'i'e_lk(Zj_ZX) 'U(ZS—ZJ.))'
orin the dimensmnless form
dA 1 & 27i(Z,-Z,)
m j :_WZA e - UZ,-Z)+
o (XV.5)

27iZ

B wz, | |
+e " U(Z, -2 )]-E, - =5E.(Z;,7)~E;- ¢

where
y=y516,=ne’M | mc; E=eE/moya, A=Alay

ot A 2
kz, =27Z, T=yt; A, =alA; [T A,

2
a,)

The account of the nonlinearity of the oscillator is necessary [XVI-1, XVI-2].
The electric field strength of the oscillator radiation in dimensionless units can be
described by the expression

2 N 7i(Z . — —2ri(Z . —
Ex(Zj,T):WZA [ U(Z, -2)+e T UZ,-Z2)]  (xvie)

s=1 s

3
vo=nen/m=w, /4 a= 2
pe ) 47/0
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in this case, the expression for the energy conservation law is the same as (13.21)
d 2
A [=-Re{E(Z;.0) A%} (XVL.7)
Obviously, the field can be represented as

| E(Z,7)[=[Re E(Z,0)} +[Im E(Z,7)F. (XV1.8)
Representing the field in the form |E(Z,7)|-explip(Z,7)}, we can

distinguish the phase of the field ¢ (Z , 7 ) from the relations
Cos[p(Z,7)]=Re E(Z,7)/ | E(Z,7)|,
Sin[e(Z,7)] =Im E(Z,7)/ | E(Z,7) |, (XV1.9)

where

ReBZD) = 3 A [Cos {2122, w1} UZ -2+ Cos{ 221 22, |91 UZ, =)

s=1

ImE(Z,7) :%i/g [Sin{27| Z—Z |+, - U(Z~Z)+Sin2z| Z—Z. |+, }-U(Z. - Z)]

s=1
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ANNEX XVII
PLASMA GYROTRON EQUATIONS

Transition (14.6) is carried out on the basis of the following transformation:

explind,}-J,(x) = 3 J, (x,)-J,(x,) - explind}  (XVILA)

g=—©
here x, are the sides of the triangle (i =1,2,3), 6, =4xx, is the angle between
the sides x, and, x, accordingly, 6, =/xx, is the angle between the sides x,

and x, of the triangle.
Figure XVII.1 below shows the Larmor orbit of the electron in the section of the

waveguide. Itis easy to see that X, x, X; can be defined as 7,7;,7, respectively.
Here the radius r,, of the waveguide determines the position of the electron
beam, r,. is the position of the center of the Larmor rotation of the electron, 7, is the
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Larmor radius. The angles 6’12 and (923 correspond to the angles (z/2)—¢—-6

and ¢C . Using the above relation, we can obtain the expressions for the fields
in the rotation system of an individual electron (14.7) — (14.8)

Fig. XVII-1. Larmor orbit of the electron
in the section of the waveguide

Let us also dwell on obtaining expressions (14.11). For the case of TE wave,
from the Maxwell equations we have

0’ o’ 4zl 1 d 1
L—gﬂﬁz—c—zj& =7{;;(U9)—;1m£} (XVI1.2)

"y 2z
Having applied the operator O = Irdrj do0J, (k,.r)exp(—im@) to both
0 0

sides of this equation, we shall obtain
(kz2 +ki — /cz)(kz2 —@ /cz)-b- ﬂTé{JZ(ker) +[1—m2 /(ker)z] -Ji(ker)} =

v,

2z
i - XVIL.3
(4t )R, [ [ a6 JE'). (Vi)
0 0

From where, given the boundary conditions, it is not difficult to go to equation
(14.11).

Equations of a plasma gyrotron. The expressions for the wave field in the
presence of low-density plasma will somewhat change [XVIII-1]

B. =b(z,t)J,, (k,r)exp(—iet+imb) (XVI1.4)

2
(B,.E,)= {ﬂ J, (k. r)+ %M (klr)} exp (=it + ik,z +imf)x
r C

1

x( 5w b] (XVII.5)

k?* oz ck’
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2

(B,.E,) :[J'm (kr)+ 2222 (kLr)]exp(—ia)t+ikzz+im¢9)><

(XVI1.6)
10b . w
x[__,_,_b]

It is rational to use such a representation of fields to obtain the stationary gain
regime along the waveguide. Here there is the expression for the components of

the permittivity tensor of the medium ¢, (a),lg) D8 =&y =& =l—a)pe2 /(0 —Q,°),

. . 2 2 2 2 2 .
£ ==&, =ig, =i, Q, /co(co -Q, ) ey=&=1-w,” /@ . In this case, the

conditions (k. /k,)<1 and g = (a)zgxy /czkf) =w’e,/c’k,’ <1 are considered to
be fulfilled and the dependence on the coordinate z has not yet been determined.
The transverse component of the wave vector kL :k'ms = x'ms / v, is determined
from the boundary condition

2 2
T (¥ )+ ac)zi?rwz x’vn J,(x,,)=0. (XVI1.7)

ms

The field equation takes the form

(52 Fe jb= sk [ 21 2 (0, )+ () (5 -) ]

ol c "

b 53 o o) ool -2 )

J=1 J

Upon transition to a coordinate system whose center coincides with the center
of rotation of an individual electron in the beam, the fields are transformed as it follows

b.=b, b, =b,+igh,, b,=b,—igh,, €, =€ —igCy, €q =€, +ige, (XVII.9)
Given relativism for the particles of the beam

-1/2
Q, =eB,/mc= a)B(l B =By ) , let us present the equations of their motion

ﬂJ_O _ﬂj_z —20., (vz _Vzo)/c:'+

2ﬂdé’:na)80 @ anO[
dz %

z

€ ' j " no in’v,
+n v Jnm(kms’”(:)exp(Zlﬂé'){Kl—yjt]n(a)—g;]n(a)}b— —x (XVIL10)
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For the case of a sufficiently large Larmor radius, the equations of the
amplification regime can be represented as

d’ 0 2 RN , n
( . +i¥+ 7 jEP :——Zaj [Jn (aj)+gan (aj)}exp(—%ﬂg“j), (XVI1.13)
P

dsp
d ? -1
ﬁd—g—a{AP—kazg + B ( — )J+exp(2z7r§)

P

2 . (XVII.14)
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L], (a2, (o) oxp (21 =1 s
do ; OF, [ ! n } :
—=—-R J —J 2 ,
JZ o o n(a)+ga . (@) |exp(2inC) (XVI1.16)
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and on the left side of the equation the time derivative g is taken into account,
P

where 7, = p,°c’ 120G |
With a small argument of Bessel functions, using the new variable
Eq = 7wz / 2v,  one can obtain modified Gaponov equations (14.21) — (14.22).
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ANNEX XVIiI
INTEGRALS OF EQUATION SYSTEMS,
WHICH DESCRIBE CYCLOTRON INSTABILITIES

Let us note that the integrals are valid for these two waves TE and TM
R-a’ —2n-n = Const, (XVIII-1)
N

|E[* <(2/R)-N"'>'m, = Const, (XVIII -2)
j=1

N
|E =n" N> a’ = Const, (XVIII -3)
i=1
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In this case, the last integral (XXII1.3) is valid for 6=0, if 00 on its right-

t
hand side Const—)Const+9-J0dt'|E(t') ”. It is useful to pay attention to the
corollary of the integrals [14-7, 15-2] in the absence of field energy loss (6=0):

changes in the energy of transverse motion
o, -m, N e

AW, =—* E 2 N> (a’-a’,) and changes in the energy of longitudinal
ms Jj=1
. Voo m, Ny,

motion AW, = N~ Z (n,—m,,) are related to each other as

AW AW, =no, /k 1% and changes in the field energy and changes

z " z0

in the energy of transverse motion as @ / nw,

The consideration of the case n <0 for particles moving in the direction of
wave propagation corresponds to the anomalous Doppler effect and is not
accomplished for particles that do not move in this direction. Taking into account
relativism (negative mass effect, see, for example, [XVIII-3]) leads to the appearance
of nonlinearity in the equations of motion (14.13) and (15.12). Indeed, in equations

(14.13) and (15.12) 1, should be replaced by m, —a(a;-a;)), where
i Jjo

a’y=a’|_s Yo =(1-vg /)"y, o= nwd -yl )2k %8,
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ANNEX XIX
MODULATION INSTABILITY OF A FLAT WAVE
IN A TWO-DIMENSIONAL CASE

For two-dimensional instability of a plane intense wave, the system of
equations is

d¢0 5 S N ) ) S N
=—uy =42 2w, tu, )=2> >u,u, cos®, (XIX-1)
df s>0 m>0 s>0 m>0 ’ ’ ’
d—uo {—0 -2 Z Z u, u_, sin®, ++G, (XIX -2)
-5 m>0
dun S { 5 + 2 n,—s - CD + 2 —n —S i i \P }
—=1U — u Sin - u u__Sin
dt n,s 0 U n,s U o~ —m,—z""m,z snmz (X|X _3)

n,s n,s
’ ozes m>0
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d¢ 1 s N
ns _ (2 2\ _ A2 22 2 2 2
=(K,, +K; )=2uy +—u, +u, _ + 2> > (w,, +u_, )]
dt 2 z>0 m>0
Z#S m#n (XIX 4)
2 u—n -5 u—n —s S N
~uy ——cos®, —2—= > > u_,_u,.cos¥ .
un s un s z>0 m#n
K 7 ozzs m>0

where @, =2¢,-¢, —@_, _ and - - , for wave numbers

snmz

in two directions we have
2 —
K ={1+( |n]\|[ N) /1_5}_1(13, K,,=0.1-s.
For a slowly changing field, the expression is

S N
EM (é”?’t) = [uO + z Z [um,s eXp {_iKm,sé - iKm,sn + i((om,s - ¢0)} +

s>0 m>0 (XIX '5)
+u_, _expiiK, &+iK, n+i(p_, . —@)} 1]

In case if it is necessary to view the fine structure of the field, that is,
individual waves we have

E, (&.n,t) =exp{—ik,$ +ip,} x

S N
x(uo +> > (um,s exp(—iKm’Sf —iK, n+i(e,, - (/70))+ (XIX -6)

s>0 m>0

+u_, _ exp(iK, & +iK, n+i(p_, - coo)))).
In the rest system of modulation for such a fine field structure, the expres-
sion is
E, (&,n,t) = exp{—ik,((& + 2kyt)) + iy} -[u, +

S N
+2 2 lu, exp{-iK, &—iK, n+i(p, —@)—2K, kt}+ (XIX-7)

s>0 m>0

+u—m,—s eXp {le,s§ + iKm,sn + i((o—m,—s - (00) + 2Km ) kOt}]]

ANNEX XX
SELF-SIMILAR STRUCTURES ON THE SURFACE
AND IN THE VOLUME OF CRYSTALS

Any crystal lattice in the bulk and on the surface of a solid is formed as a result
of a certain process — the ordering process — primary instability, which has certain
inverse characteristic development time and is saturated with non-linearity. This
nonlinearity is due to a deviation from the equilibrium position of a fairly homogeneous
subsystem of atoms, inside which interactions with the nearest neighboring atoms
prevail.

Very often, the nonlinearity is cubic or higher (often there are more neighboring
atoms, but their contribution to the interaction is not always equivalent and that is why
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only some types of interactions dominate). The source of nonequilibrium is perturba-
tion of the density of the medium due to overheating, and a significant absorption of
energy in the process of ordering - instability is due to the transfer of energy by elastic
waves from this region.

The process of the emergence of primary structure as a whole is determined,
first of all, by the dominant mechanism of interaction of elements, which forms its
geometry, characteristic dimensions, and orientation.

It can be assumed that at the stage of the primary process, the formation
of a periodic structure occurs due to the narrowing of the spectrum of density
perturbations due to the nonlinear mechanism of perturbation competition, similar to
those considered above.

However, in addition to the main mechanism of interaction of elements, a
number of weaker interactions are often present in the system, manifesting
themselves only under conditions when the process of constructing the main (primary)
structure is close to completion.

The crystal surface structure has always attracted the attention of researchers.

First of all, because the differences in the structure of the surface layer from the
internal structure of the crystal were undoubted, in particular, there were regular
surface formations whose linear sizes significantly exceeded the corresponding sizes
of the unit cells of the crystal. It was believed [XX-1, XX-2] that a solid body always
strives to lower its surface (and therefore total) free energy, while forming at the same
time its “mountain” structure of hills and valleys, where there are 12 convexities of
electron density corresponding to the positions of individual atoms [XX-2]).

For example, surface large-scale diamond-shaped regular formations on the
surface of a silicon single crystal are known (the so-called “7X7 cell”, where 12 con-
vexities of electron density, corresponding to the positions of individual atoms are
located [XX-3]). The surface layers of atoms, the nature of the interaction and the
corresponding arrangement of which differ from similar parameters of the atoms that
make up the bulk layers of the lattice, already at scales comparable to the size of the
unit cell, exhibit deviations in regularity, noted, for example, in experiments [XX-3].

Periodic deviations in the positions of local maximums of electron density
were observed at distances significantly exceeding the characteristic unit cell size,
but no distortions of the boundary in the direction normal to the sample surface
were discussed.

Below there are the results of experimental studies [XX-4] of the graphite
surface by scanning tunneling microscopy (STM). The studies were carried out in
air using a STM — 1 scanning tunneling microscope described in [XX-5].

Resolution in the horizontal XY plane is less than 1.4 4, and vertical

resolution is 0.7 4 . As a probe, needles prepared by the method of electroche-
mical etching with a hood were used. The graphite surface was cleaned by chipping
the upper layer immediately before the measurement. Fig. XX.1. "a", "b", "c" shows
topographic images of highly oriented graphite portions at various magnifications
obtained by scanning in tunnel current stabilization mode. The time for scanning
sections is 10-20 sec. Fig. XX.1."a" presents an image of a highly oriented
graphite at maximum magnification.

The ordered rows of the hexagonal structure of graphite are observed: the
hexagon consists of atoms with different levels of local density of states. Let us
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note that the unit cell parameters are consistent with the data presented in the
works of other authors.

0.74
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Fig. XX.1. Topographic images of highly oriented graphite
at various magnifications obtained by scanning tunneling microscopy

Periodic modulation of surface electron density (large-scale corrugation) was
found in individual sections of the samples, the character of which is similar (with
a similarity coefficient close to 10) of small-scale modulation of electron density
within a unit cell on the surface of graphite (see Fig. XX.1. "b") .

On another sample (see Fig. XX.1. "c"), surface corrugation was found, the
longitudinal linear dimensions of which are two orders of magnitude greater than
the corresponding unit cell sizes (the size of the vertical modulation of the surface is
only twice as large as in the previous case shown in Fig. XX.1. "b"). Let us note that
the linear modulation scale of surface electron density, discussed in [XX-6], cor-
responds to the longitudinal corrugation scale shown in Fig. XX. "b".

The longitudinal scale of the corrugation shown in Fig. XX.1 "c" is an order of
magnitude more. The observed differences in the characteristic sizes of the modu-
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lation of the graphite surface are apparently associated with various modifications of its
internal structure. It is possible that the case shown in fig. XX.1. "b", presents the most
common allotropic form of carbon — graphite with a hexagonal structure.

Fig. XX.1.“c" corresponds, as it can be assumed, to the rhombohedral
packing of graphite. The undoubted similarity of the primary structure — the unit cell
and the secondary structure — modulation of the electron density surface is more
important than the vertical component of the modulation for the obtained experimental
data, at least in the case shown in Fig. XX.1. "b".

The cause of modulation instability, which forms self-similar structures, may
be shear stresses due to the nonlinear interaction of the primary structure with
improper perturbations of a non-divergent type, which can change near the surface.
The approach [XXI-6, XXI-7] to the description of the lattice stability can be
constructive. You can consider a simpler model.

Graphite is a multilayer structure, each layer of which represents carbon
atoms, united by strong covalent bonds. The bond between the layers is
determined by weaker Van der Waals interactions. The surface of each layer
can be considered inextensible, and the van der Waals forces only lead to its
corrugation. It is not difficult to build a model that can qualitatively clarify the
appearance of large-scale corrugation on the surface of graphite. Let us
consider a simpler two-dimensional case, with the OX axis directed along the
inextensible layer, and the OY axis defined perpendicular to the sample
boundary. Then the corrugation wave number inside the graphite sample

can be written as k, = ky, +ack, /4, where the ratio between the spatial

period A and the wave number of the periodic structure is k =27/ 4, koo
is the wave number in the absence of corrugation, a, is the amplitude of the

corrugation, and the above expression is valid for (k,a,)’ <1. For a
perturbed system, we can write the equation
.0 K lal
(k—i—)-a=ky+——a. (XX.1)
oy

Let the corrugation perturbations have wavenumbers k, =k, =K and

amplitudes 4. , then for these perturbations one can write the equation
3 2

%miiKaJr:i%a; (XX.2)
from where it is not difficult to find a solution ~ exp{—iKy}-exp ik a;y /4}
growing to the surface, where, due to the oscillating factor, the amplitudes of
large-scale corrugation disturbances are limited. An approximate equality
(k0a0)2 ~ (ka)’ +(aiK)2 is performed, where the value (koao)z is in
the depth of the sample. On the surface (ka)’ zoz-(aiK)2 it can be

assumed that a~1 g for the allotropic form, and @ = 0.2 is for the
rhombohedral packing of graphite.

Instead of one stable position of a single atom in the surface layers, two or
more such positions can appear. The shift of the atomic layers in the interior of the
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crystal is noticeably weakened; therefore, overlapping of the same type of periodic
lattices can occur near the surface, followed by rotation of one of them with respect
to a more deeply lying one at a small angle. Such structures are called Moire
structures, and the period of large-scale modulation is completely determined by
the angle of rotation ¢ when decreasing ¢ period increases. The surface layer of

the crystal may be deployed on a small angle relative to the next layer facing the
surface of a sufficient number of dislocations of the same sign [XX-7] — [XX-9]. In
this case, the so-called superlattice, i.e. a lattice having the same topology as the
main one, but this lattice has a longer period, which depends on the angle of
rotation. The mismatch of the scales of the primary structure (lattice period) in the
planes tangent to the surface of each of the crystalline layers can lead to the
appearance of stresses normal to this surface near the crystal boundary. These
forces, acting both in the vertical and horizontal directions (that is, parallel to the
macroscopic surface of the sample), can, with a relatively low level of fluctuations,
introduce some equilibrium state. This equilibrium state must have a certain depth
of vertical modulation of the crystal surface in order to combine the scales on the
surface and in volume.

Obviously, the formation of spatial modulation of the surface layer occurs
under the influence of a weaker physical mechanism, so the role of fluctuations that
accompany this process may be significant. In some cases, fluctuations can disrupt
the secondary instability, and deep vertical modulation of the surface may not be

introduced. Thus, in the first case (Fig. XX.1. "b") &, 107!, and in the second

(Fig. XX.1. "c") it is &, oc1072. The characteristic time of formation of a regular

surface structure should be expected to be 10 and 100 times, respectively, longer
than the formation time of the atomic structure of graphite.

Volumetric violations. When a single crystal is formed, the arising regular
periodic microstructure — the atomic lattice of the crystal in a nonlinear medium is
unstable in the bulk of the sample. The development of this instability (i.e., a secon-
dary weaker process compared to the process of forming a single crystal lattice)
leads to large-scale regular displacement of atoms from the positions characteristic
of a perfect lattice (an analog of modulation instability). In places of the greatest
deviation of atoms, a spatial shift of atomic rows occurs and characteristic defects —
dislocations appear.

The ratio of the scales of the unit cell of the crystal and the large-scale
dislocation network — the Frank network — is of the order of 107™. If we assume that
the mechanism of the formation of the Frank mesh is similar to the processes

considered above, then &, « 107, It can also be expected that the characteristic

time of the formation of the Frank network is 10* times longer than the formation of
a regular atomic lattice. The forces of interaction, which form small-scale and large-
scale structures, are in the same proportion.
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ANNEX XXI
NATURE OF FORCED INTERFERENCE

At various initial amplitudes of the modes u, and u_,, for which the value of

2|n|-N

the wave numbers K,f falls into the interval 1+(———)W1-0, their nonuniform

growth occurs at {—d + uozSin(D *.3=7>0.A mode with a larger amplitude grows

more slowly than a mode with a smaller amplitude. For the amplitude difference from
equation (16.22) we shall obtain

o(u, —u_,)
ot

which describes the dynamics of the alignment of the growing amplitudes of the
modes. Alignment of amplitudes and their growth occur already in the process of the
development of instability. To correctly determine the behavior of the phase difference
of these modes, it is useful to use the equations of the system (16.18) — (16.23),
whence we can obtain

Ah=0) 4Gty oy g &=, 2 Sy sy,

dt dt - w+u’) @+u’)s "

={~5—u’sin®* }-(u, —u_,), (XX1.1)

(XX1.2)

It should be noted that when the mode amplitudes are equalized, the phase
difference does not change at the initial stage of developed instability. Thus,
despite the synchronization of the total phases of the spectrum modes by the main
wave @ — @ * , each pair of modes at the nonlinear stage of the process preserves

the phase difference, which leads to the interference imposed by the main wave.
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But this does not mean that each standing wave formed by a pair of modes does not
change its position relative to the main wave. Let us consider in more detail the
behavior of the phases of the growing modes. It is useful to switch to a frame
of reference in which the phase of the main wave does not change. In this reference
frame we have
N
a9, 4o, _ 2 ué{u‘” cos® +1}+{u’ + 22 u,u_,cos®, 1. (xx1.3)
dt dt u, 0

Assuming that the total phase in the process of instability development
adjusts to its quasi-stable position @, * and taking advantage of the fact that the

amplitudes of the symmetric modes are aligned u, ~u , we can obtain accurate

to quadratic terms in u

2

—K?
LR KT —uy), (XXI.4)

dag, d¢, e _ug{ug —u’ — K> +u; +2u’3}+{uf +§:”m2 U

da dt " us +2u’ = u,
2 2
< 2 z/lO _Km ey
moreover, let us note that due to asymmetry _Z”m 2 at the initial moment
m>0 0

it is equal to zero and remains small at the initial stage. Shifting the phase of the
main wave by 77/4, let us represent the wave packet of the spectrum in the form

N
a—uyexplir/4]c2) u, -Cos{—K,E+2(K; —u; )t +a,}  (XXI.5)

m>0
. :
@n - 7[ / 2 B . 72 h‘»‘.‘\-z.\vwH'I.\‘I.Wi\‘l"w.'.r.\'ﬁvav—-u-wh'.".\—
where «, = (—*———). Expression (XXII.5) is :
2 63 ravavavm—arAW NV avavind
a collection of standing waves. The phases ¢, of ) R —

the longer K <u, disturbances are located in a5 prnwoneent I v ornereised
m 0 A Wi

the negative region and move, as it follows from s
(XXI-5), in the positive direction, and the phases

o, of the shorter disturbances are in the positive
region and move in the negative direction. That
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is, longer standing waves K <u, move towards

0 10 20
shorter ones K <u,, and with a decrease in the Fig. XXI-1 The evolution
amplitude of the main wave, the energy is more of the wave profile of anomalous
concentrated in the long-wavelength part of the amplitude in the experiment [XXI-3].
envelope spectrum. The ordinate is the time of each

The more the length of a standing wave  segment (in seconds),the abscissa
formed by a pair of modes differs from the length IS the distance estimate (in meters)
of a disturbance growing with a maximum increment, the greater is the rate of
change of its phase. The interference of these standing waves imposed by the main
wave is forced [XXI-1, XXI-2] and accelerated with a change in the amplitude of the
main wave. The process of interference of a set of standing waves forming an
anomalous envelope can be seen in the observations presented in [XXI-3].
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ANNEX XXII
WAVES OF ANOMALOUS AMPLITUDE IN THE OCEAN

An urgent problem of the safety of shipping and oil and gas production in the
oceans and seas is the determination of the conditions for the occurrence of surface
waves of anomalous amplitude that can lead to major disasters and accidents.
Previously, when the intensity of shipping and oil and gas production was not so
intense, the occurrence of such waves was considered rather rare, and there was no
need to take into account their appearance and impact. With the increase in the
number of vessels and their personnel, there is numerous evidence of the occurrence
of such anomalous waves.

However, people are not only worried about the detection of such waves of
anomalous amplitude, it is necessary to find out the features of the life cycle of such
waves, how long they can exist and whether they can move. It is useful to find out the
time of existence of waves of anomalous amplitude, the nature of their appearance
and the dynamics of propagation.

Abnormally high waves as they are (extreme waves, rogue waves, abnormal
waves, exceptional waves, giant waves, steep wave events) on the surface of deep
water (these are so-called gravitational surface waves, the length of which is much
less than the depth of the ocean, by the way, with decreasing depth, the speed of
the wave slows down) are divided into three main types: “white wall”’, “three sisters”
(a group of three waves)?, and a single wave (“single tower”) [XXII-1 — XXII-4]. The
height (swing) of the wave is usually indicated precisely as the distance from the
highest point of the crest to the lowest point of the trough. The width of a train of giant
waves can reach from several hundred meters to a kilometer, which is longer than
the lengths of such waves.

In some cases, the direction of propagation of such waves, which often stray
into groups of two or three waves, differed from the main direction of wave motion
up to tens of degrees.

22 The used simple model presented above, which is quite adequate for the correct description of nonlinear
ocean waves - the wave packets of the Three Sisters type. The appearance of waves of other type is quite
possible (see, for example, the discussion of this issue in [XXII-8, XXII-9.]) but the reasons for their
appearance are discussed in section 19.
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Anomalously high waves are waves whose height is more than two times the
significant wave height. The significant wave height is calculated for a given period
in a given region.

For this, a third of all the recorded waves, which have the highest height,
is selected, and their average height is found. Most modern vessels can withstand
up to 15 tons per square meter, and in the case of even strong waves, this cor-
responds to more than double margin of safety, however abnormally large waves
can cause pressure up to hundreds of tons per square meter [XXII-5]. All this inspires
concern for maritime workers. Therefore, attempts are being made to find out the
areas of their emergence, to determine the frequency of occurrence of such waves,
and to develop methods how to warn about their appearance.

Based on the data received from satellites, it was possible to draw up an
approximate map that will help skippers avoid dangerous areas. Europeans are
primarily concerned about the eastern coast of South Africa, the Bay of Biscay, and
the North Sea. There are other dangerous regions — this is the southern part of the
coast of Latin America. Doubting the possibility of early warning, Swedish experts
recommend creating virtual maps of the oceans with the designation of moving
"triangles of death" on them — sections where, at certain times of the year and under
certain conditions, the appearance of killer waves is most likely. The areas of sea
currents were previously considered as the areas of the most probable appearance
of killer waves [XXII-6]. The authors of [XXII-4, XXII-7], believe that the probability of
random elevations of the sea surface P (H) obeys the Rayleigh distribution:

HZ

P(H)=eXp{—2?}, (XXI1.1)
where H  is the average height-swing of one third of the highest waves®. It can be
shown that such waves can appear quite often. According to their calculations, a
wave with a height-swing 2H _ is a wave of approximately 3-10° —10* waves
(waves in the ocean far from the coast have lengths of up to 100 meters and
higher, and velocities of the order of 10 m/s), which did not contradict some
experimental data. However, if we use the value of this probability, then for 3/ . we
shall get that a wave of this height can be observed once every 20 years. In
comparison with the estimate (19.11), waves with an amplitude exceeding 2H
were quite frequent.

However, according to the observation of the MaxWave project of the sea
surface from space, the wave H/ H =2.9 was observed. Over 793 hours of wave

observation in the North Sea, a wave with H/H =3.19 [XXII-10] was recorded.

Such unexpectedly frequent recording of extreme waves has led to the need for
a serious review of approaches to the applicability of the classical statistical model in
the high-wave region. The random mechanism of the formation of anomalous waves
was not correct, therefore, the main attention was paid to other mechanisms, which
are mostly based on the results of the development of modulation instability of
gravitational surface waves in deep water. In particular, it is similar to the above study.

2 W. Munk, Proposed uniform procedure for observing waves and interpreting instrument records, SIO Wave
Project. Translations by D D Bidde and R L Wiegel can be found in Translations of Four French, 1944.
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To determine the zones of the oceans where abnormal waves are most likely to
occur, it is necessary to determine the conditions, frequency and values of anomalous
waves using the developed environmental models based on the developed
mathematical models. Monitoring, which consists of checking a number of critical
indicators, should be based on the results of simulations similar to the simulations
performed above. For the observed anomalously large waves, the doubled amplitude-

2|A°|kooc0,13,

T
where there is no collapse (breaking) yet [XXII-10, XXII-12], the average height (from
undisturbed surface, 24 ~ H ) of the dangerous wave generating the killer wave is

range of which is estimated from the empirical relation (2 +3)

comparable to | 4, |< 0.041 and for waves whose wavelength is 200 m. the
amplitude can reach 8 meters. The wavelength is related to the oscillation period by

the relation 1 oc 1,6 - T* for two hundred meter waves with a period of 11 sec. Such

ocean waves correspond to a wavelength of about 15 m. The ratio of the maxim
increment of modulation instability to the oscillation frequency is of the order «, where

a=Imw/w=(4,|k)’/2=0.01 under the conditions discussed above. The phase

velocity of such waves reaches 18 m/s, the group velocity is half of that.

In other words, the characteristic process time (reverse increment) can be
estimated as 3—4 minutes. In less than an hour, it will be possible to observe instability
at its developed nonlinear stage. In case of wind excitation (the wind speed should
exceed the phase velocity of gravitational surface waves equal to about 15-20 m/s,
but if there is a counter current, then the wind speed can be even less than this value
by the value of the current velocity), the zone of developed modulation instability
is 20-50 km from the border of the zone of active wind excitation. The number of such
waves in areas of strong wind exposure was on the one hand significantly larger than
that allowed by statistics of random interference processes. But on the other hand,
a simple calculation of such waves by means of space monitoring may also be
inaccurate due to the small viewing area (frame). Once formed, such waves are able
to drift at a speed (half the group) at significant distances. Moreover, they can fall into
the next viewing frame, which unjustifiably increases the number of such waves in the
entire observation zone.

Modeling of the dynamics of anomalous amplitude waves. Here we used
the description in the framework of the so-called modified S-theory [XXII-12], and the
interaction occurs only between the spectrum modes that are symmetric with respect
to the pump (k,+k , =2k, ks+k =k, +k_,). In section 19 and in [XXII-13] it is
shown that a direct calculation of equation (19.1a) and S - theory lead to qualitatively
the same results.

In the presented model, the characteristic spatial scale is correlated with the
wavelength k& = £, that is, the time scale is determined by the ratio 7=¢- - w,

that is, the unit of measurement in space is the wavelength, and the unit of time is
the inverse increment, that is, the characteristic process time.

For each moment of time, the amplitude (remind, here it is wave height or
swing, i.e. distance from ridge to trough) H was calculated — the difference
between the neighboring maximum and minimum, at —1047 < £ <1047 (about

333 wavelengths). For each moment of time, the relative maximum amplitude
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H ., was calculated: the ratio of the maximum amplitude Hmax to the average
H _, over the entire space

H, rel
H,,

2.5
i

1.5
1

0.5
0

0 200 400 600 800 1000 T

Fig. XXII.1 The behavior of the relative maximum amplitude
of the waves H ,,, in the interval —1047 < ¢ <1047

At the initial stage of instability development, a quasistationary regime is
reached with an average range of wave motion close to unity, which is approximately
two times less than the initial value for the main wave. The largest wavelengths are

achieved at the time 7 =425 in the region near { = —482 and also at the time

7 = 888 near ¢ =956. For example, one can imagine phase diagrams and the
form of the field in the vicinity of the maxima of the ranges (see Fig. XXII.2).

=425

1,=0.266

4 (=-482.6 4 ¢=956.1
1 1
0 0
1 -1
) -2
-500 -490 -480 -470 ¢ 940 950 960 970 ¢

Fig. XXIl.2. Phase diagrams and field views near the maximums
of the amplitude for the first maximum H ., =3.118 H , = 3.253 (left)

max 1

and H_ , =3.035 6 H,, =3.094 (right)

rell

It should be noted that, the amplitude of the main wave (the bullet point) is
not so small, it controls the instability to a lesser extent, Indeed, in the developed
regime, the energy of the main wave turns out to be half the energy of the spectrum
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(see Fig. XXII.3), which, by the way, is characteristic of developed modes of
modulation instability in other cases [XVII-14].

"
24 1
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u'+ ) up

-k

0.5
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Fig. XXI1.3. The behavior in the developed regime of the energy of the main

wave ”02 (lower curve), the energy of the spectrum uoz + Zuf( (middle curve)
K

and total energy u,’ + Y u; (upper curve)
K

It is of interest to consider the movement of wave packets with a maximum
amplitude in space and in time (Fig. XXII. 4.)

H,oy H o
3 \/\_/\ 3 -/_—\-/\
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410 420 430 440 ¢ 870 880 890 900 910 ¢

Fig. XXII.4. Change over time of the maximum amplitude of the wave packets
(in their rest frame) near the maxima of the swings for the first maximum

H_ . =3118 H , =3.253 (leftyand H__ , =3.035 H _, =3.094 (right)

max | rell max 1 rell

For the first packet (left), the maximum speed in the adopted units is 21.6, for
the second package (right) the maximum speed is 21.7. That is, the movement of
the crest of the anomalous wave occurs at the same speed. This speed is the
group velocity of the packet, which is easy to see by considering the ratio

%
% g6 oY 2 here—= =054 (xxiI2)
ot o o (al2) v, a’ Vo

In the laboratory system, the change in the amplitude of the crest of the wave
of anomalous amplitude is more pronounced (see Fig. XXII 5). This qualitatively
corresponds to the duration of the Peregrin autowave [XXII-15] in the laboratory frame
of reference. Although it should be noted that the Peregrin autowave corresponds to
a different physical reality, where the dispersion of the wave is weak. Gravitational
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surface waves have a strong dispersion, #
and the NSE equation (19.1a) in this
case is strongly modified. However, in a
wave moving relative to the laboratory 2
system of rest, the wave lifetime is much
longer. Figure XXIl.4 shows that the time
of existence of a wave of anomalous g 285 290
amplitude in a reference frame moving
with a group velocity of a packet does not
exceed 40 time units in the model under : ,
. : . . packet, the maximum values of which were
consideration. Given its speed, a wave I 3035 H . —3.094
can travel hundreds of wavelengths. It is T et T
worth noting that in the numerical experiment considered at one moment in time, two
waves of anomalous amplitude of 333 waves appeared in the observation area (see
Fig. XXII.1) and during the order of 40 units there were no new waves; people in the
sea can meet the same wave more than once.

Waves of anomalous amplitude, as it turned out, are long-lived formations
drifting in the direction of wave motion with the group velocity of the wave packet,
which is half the phase velocity of the main wave. The longitudinal size of the wave
packet practically does not change, the amplitude of the maximum amplitude first
increases, then gradually decreases. The distance that a wave packet travels with
a persisting anomalous range is at least equal to several hundred wavelengths and
for it can reach hundreds of kilometers for 200 meter waves.

It is important to note that a wave excited as a result of wind exposure as a
result of modulation instability forms a disturbance spectrum whose energy is twice
the energy of the main wave in the developed instability regime. It is the mode
interference of this spectrum that forms a bizarre wave pattern, where waves of
anomalous amplitude appear from time to time.

On the one hand, the number of such waves in areas of strong wind
exposure is much larger than the statistics of random interference processes allow.
This is due to the influence of the main wave (its amplitude remains noticeably
greater than the amplitudes of each of the modes of the wave packet) on the
behavior of each pair of modes from the wave packet of the perturbation. This is the
effect of forced interference imposed by the main wave. However, the simple
calculation of such waves by means of space monitoring due to the small viewing
area (frame) may also be inaccurate. Once formed, such waves are able to drift
over significant distance. Moreover, they may well fall into the next viewing frame,
which unreasonably increases the number of such waves in the entire observation
zone. That is, evaluation of the number of such modes can be overestimated.

The shape of the packet, which contains a wave of anomalous magnitude,
and which is more than three times the average value of the magnitudes of the
wave motion, is a train of three waves, similar to the Peregrin autowave [XXII-15].
The remark of V. E. Zakharov that there are other types of anomalous waves
of this nature [XXII-8, XXII-9], based on the observations of [XXII-1 — XXII-10],
is explained by the results of [XXII-16], where it is shown that converging
wave fronts can certainly generate more powerful anomalous perturbations
of a slightly different topology.

1

Fig. XXI1.5. Change in the swing of
anomalous amplitude wave for the second

max 1
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ANNEX XXIII
COLD PLASMA.
ONE-DIMENSIONAL SILIN EQUATIONS

Let us first consider the case of parametric instability of an external long-
wavelength Langmuir field of high intensity for cold plasma, that is, when the
energy density of the field exceeds the density of the thermal energy of the medium

W=|E, l4n>n,T.
The equations of quasi-hydrodynamics for particles of a variety are known to
have the form

ov, 0 e, 0
+uy, —v,——*+E=-v, —v_,
ot ox m, X
8t O a Oaax a ax aa”? '
0
ox ; s

where o =e and =i correspond to electrons and ions. Particles are in the field
of an external wave, the length of which, for simplification of calculations, is set
equal to infinity, oscillating with speed u,, =—(e, |E,|/m, a)o)cosd)

It is important to note that the initial variable field exciting the instability spectrum
in the volume of consideration is uniform in space. This leads to oscillations of
plasma electrons in such a spatially uniform field, that gave reason to call this
process the parametric excitation of the wave spectrum. Traditionally,
parametric instabilities are usually called processes, the cause of the
development of which was a periodic change in an individual parameter (or part
thereof), responsible, for example, for low-frequency motion, as in the cases
described by the Mathieu equation. However, the last equation did not contain
the inverse effect of the developing process on the source, causing high-
frequency modulation of the parameter. That is, such a system was not self-
consistent. In the case discussed below, the entire system is self-consistent,
which is usual for the description of phenomena in plasma. The spectrum of this
instability is similar to the spectrum of the modulation instability of a wave
motion with a finite wavelength. In addition, the effect of this spectrum leads
to modulation of the density of the medium. All this gave reason to consider
such a parametric instability as a type of modulation instability (or, on the
contrary, consider such a modulation instability as a type of parametric one).

The components of the field strength of the external wave are defined as it follows
E, =—i(| E, |exp[(ioyt +ig)—| E, | exp(—iayt —ig)]/ 2.

Getting rid of £, =—4rie(n,, —n,,)/ kp, let us rewrite the first equation of the
system (XXIII.1) in the following form

wv,, 4re i
—=+uy,ikynv, , + e, ==tk ) mv, v . XXI1.2
81,‘ ‘ k,nm, ; 7 Z ( )
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We use the following variables nepemeHtsie V,,=en,, exp(—ia,,sin®),

=V, exp(-ia,,sin®), where a,,=nekE /m., P=af+¢. In this case,
the first two equations (XXIII.1) can be written as

ov, _ .
52" + 0, ikpne,n, = —lkonz Voynm O m> (XXII1.3)
00, 4mei
oo v, exp(i(a, —a_ )sin®)=—ik XXIIl.4
ot konma; g, =, JSIOD) Z aoraban )

Obviously a,,—a,, =n(ek,E,/ M;)+n(ek,E, | m,a;) = n(ek,E, | maw;)=a,,
where k, = nk , the quantity determines the discrete set of wave numbers of the

modes of the short-wave spectrum. For electrons, equations (XXIV.3) — (XXIV.4)
can be written as

ov,, , ,
a—t’ - He,nlkOnenO = _ZkOnZ Ve,n—mee,m’ (XX|“5)
00, A4rei
> v, +v. exp(ia sin®))=—ik XXIII1.6
at konme( en in p( n )) Z e,n—m em ( )

We shall use representation
. 0 1 -1 2) i2 -2) —i2
v, =Zuff) exp(isapt) =u” +uVe™ +u' Ve +yPe?M 43PN (xXI11.7)

0., Zv(s) exp(isayt) = V¥ + vV e 4Rt 4y gmza 1)) 8)

and the known expansion exp (iasin®) = Z J, (a)exp (im®),where J (x) is the

m=—a0

Bessel function, in this case J,(x)=J,(—x), Jx)=—J(=x)=J (-x),

J,(x)=J,(x)=J,(=x) [XXIV-2], after which we can find the non-resonant values

2 _
of the density u( ) u( L u'™? and velocity v, (0) (2) ( -2)

n 27"n V
reference frame:

perturbations in the oscillating

()] (=1
5\) (-1 _ 5\) V(l)

k, 1
0) _ ™o @ =D =D,,M | _
VIO =08 (n—m)|vD yOD D~ v , (XXIIL9)
k2 2 62
U =, Jy(a,) + = SV V) =y, (a,) e [ ”} , (XXII1.10)
’ 4re = ’ Arre o’ n
(+2) 20, 1) _
y =t J,(a, )exp(+21¢)+—z mv
3k nen, @, T
, | Tayen (XXIIL.11)
=+ =Ny J,(a,)exp(+2ig) F— v |
3k nen, iw,| Ox )
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n—s

u,(fz) lvan+2(a Yexp(£2ig) — MZ sy A(H)V(H)
w

3 24
(XXIII.12)
(£
=Ly (e exp(2ig) + Lo DO
37 @, Ox| Ox

Expressions (XXI1.9) and (XXIIl.10.10) proportional to J,(a,) correspond to

slow movements, and expressions (XXIIl.11) and (XXIIl.12) proportional to Jﬁ(an)

are determined by the contribution to the nonlinearity of the second harmonic.
For resonant quantities, the equation is
oul’ @, —o) . _ wieJﬂ(an)exp(iiqﬁ)}_

t2iw 1T u-Fiv
°l o 20, 20,

in

+k02nenoz m |0 v vV | - ikon(iia)o)Z[ O VS Ful v |+ (XXII1.13)

nmm nmm nmm nmm

+k nenoz my FyED g I’l(+la)0)2{ ) ,(n”)]

The representation of u'™" = +k,nen ™" / @, =ik, nE™" / 47 , was used, where

v;il)ziieE}Eil)/mwo. In this case, collecting the terms responsible only for

electronic nonlinearity on the right-hand side (XXIIl.1), we can rewrite this equation
for short-wave perturbations in the form

2 2 2 .
lout o, -o o w., J, (a)exp(£ig) | ..
Hiw,| ——Fi—L—u{" Fiv, L et 4

ot 2w, 2w,

2

@ tim, Vi,n—m F . +
+jne‘ > 7[%& UJ,,(a,.,)exp(£2ig) + ul VI (a, ) |=  (xxi.14)
0 m

= (kynen, / w,)I.

where the contribution of electronic nonlinearity can be represented as

a av(l) ~ av(—l) 52 )
J=——| ) v WORIECD _ [va)v( 1)}_
Ox ox ox ox
(1) 1) ) (1)
_av av_v(—l) _8\1 p® +V(¢1)£ ov YED | 4
ox | Ox ox ox| Ox
()
iv(:l)ﬁ Ov HED
ox| Ox

Obviously, the right-hand side of equation (XXIIl.14) corresponding to the
contribution of electronic nonlinearity in the considered one-dimensional case turns
out to be zero, which was previously independently noted in the works by V.P. Silin
[XXII-3] and V. E. Zakharov [XXIlI-4]. Let us rewrite (XXIII.14) in the form [XXIII-5]



~ 228 ~ Selected chapters (theoretical physics)

2

2 2 ]
aur(lil) - w,, — O, w,J ., (a,)exp(xig) -

Ot 2w, o 20,
ON:

Vi,n—m (FD . (1) _
Fi uJ,(a, yexp(X2ig)+u, J,(a, )|=0.
26%; 22,4, ) exp(2ig) 0@, ]

u* Tiv

(XXII1.15)

If we use the representation for the resonance field in the form
(E,EI) e +E,(l_1) e ™) /2, as it was done in the work by E. A. Kuznetsov [XXIII-6],

then E") — E®Y /2 =—4xiu™" / k,n | and the equation (XXIII.15) can be written
differently
OESY @, - 87w, v

Fi ESV g —210J (a,)exp(ig) T
o 20, 2k (@) XPED)

zfﬁl D Vil BV (a, ) exp(£2i9) + EVJ (a,,)]=0.
0 m

(XXI1I.16)

Fi

We can also give the equation for the pump wave

2 2

ot 2w,
_ 8nw,

Viem . D) o (1) _
F u,J,,(a_ )exp(X2ihi)+u, 'J,(a_, )]=0.
2en0k0; o (a, ) exp(E2iki) o(a_,)]

Eéil) T
(XXI11.17)

From the representation of the pump wave corresponding to the chosen
oscillation velocity u,, =—(e,E,/ m,am,)cos®, we shall obtain®* F,——iF and

E; —iE; and for E, we can rewrite equation (XXIII.17) [XXIII-5, XXIII-7]:

ok, . 87ic Vi_ - .
—0 _JAE = 0 b YT (a Yexp(+2id) +ut™JT (a_ )|, (XXII.18
o M= 2 L (@) exp(r2ig) (e, | L 1g)

where A = (a);e - a)j) / 2w, , or expressing density perturbations through the electric
field strength of the modes

OE ) _ . +
— iR, =~ 2‘;’; > Viou| ES (0, ) expQRig) + ES VT (a,) | (xxil19)
0 m

Here, the terms on the right-hand side (XXIV-19) are also proportional
to J,(a) and correspond to slow movements, as well as the proportional

terms J,,(a,) are determined by the contribution to the nonlinearity of the second

harmonic.
Slowly changing in time electric field strength

**In fact, this means that | E, | exp(ig) —| E, | exp(ip —ixr / 2) , because the phase ¢ =irr/2 is connected
with the choice of the form of the oscillation velocity.
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_ 4ri
=——|V, €X za sin +V
E= ((v., exp(- ) +v,,)=
=—@(viﬁ[l—Jé(an)%J;(an)}+[u,£”J1<an)e-"¢+u,i‘“Jl(a»eﬂ— OXXil.20)
ol
0@ 4
) Y e ()T e e |
may be presented dlfferently
E,=-m, {1 Ji(a)+= Jz(a )} ~|E"J(a,)e ™ + ESVJ ((a,)e? | -
ko " 2
inko 1 _
- Jy(a)Y EO ECD (XXI11.21)
167[6 O 0( n)z n—-m—m
Ji(a, )z (n—m)[ED EWe 4 ECDECD 2],
167[
which aIIows describing ions in large particles, equations of motion for which are
d’x e _
S = Lexp(ikynx,), XXI11.22
= 2 Evexplikonx,) ( )
and the ion density is determined by the expressions
k. ¢rik )
v, =en, =en, == | exp(—inkyx, (x,,1))dx,.  (XXIII.23)
2 J-7lk

Let us note that the description of ions by large particles, as shown in [XXIII-7],
among other things, allows increasing the stability of the calculation scheme. Using
equations (XXIII.1) for ions in which the right-hand sides can be neglected due to their
smallness, we can proceed to the hydrodynamic description of ions. The equation for
ion density in this case has the form [XXIV-5] [XXIII-5]

v, . .
s Q{ {1 Ja)+= J2(a )} +[ul (@)™ +ul" T (a,)e” |-
o (XXI11.24)
——J a -m“m J(a M (1)e 2ip +u( 1)u( 1)e2l¢?
<>Z(_m)me ()Z[nmm ]]
or
82 ‘ .
V;,n _ .(vm[I—Jg(an)+§J§(an)}+d;;;mw(a Y +EN (a)e }
-1
m T (XXI11.25)

722
64nk0 J ( a )Z(n m)[ Ele—)m Efnl) o EE:B Efnfl) ezMﬂ.
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You can verify that the complex conjugate equation (XXIV.16) with the lower
sign takes the form (when summing, you can replace the dumb index m—>-)

AEY @, -w, .. 47mov., _
—i—* (ES") ———""J\(a,)exp(ig) -
Ot 2w, kyn
o (XXI11.26)
_l 267(; Z uZ*nvLm [(EEZ)*JQ (a7n+m)exp(21¢) + (EE:nl))*JO (afner):l = O
0 m
At the same time, for positive indices, the same equation can be written as
oEV @, - o dre v,
i B - (a, ) explig) -
Ot 2w, kgym
(XXI11.27)
1)
_i ° Vi n—-m I:El;_l)JZ (an—m)exp(21¢) + EI’(}’ll)JO (an—m)] = O
2en, 57 7
It is easy to see that for Ef;l) = (E,gl))*and V,_, =V.,, equations (XXIV-26)

and (XXIV-27) are identical. In the same way, one can verify that from such
transformations follows E! " =(E"))" and V,, =V;_,- Thatis, ion charge perturba-

tions have symmetry n, = n:n. Moreover, in order to correctly describe the

instability process, it is sufficient to use the components of the rf field nona Ql),EEB

n E;" as well as perturbations of the ion charge v,, at positive definite values of

the index. Since the remaining values are expressed through them, that is, you can
refuse to use the superscript. Using these simplifications, from (XXII1.19), (XXII1.25),
and (XXIIl.27) we can obtain the system of equations of the Silin hydrodynamic
model, and from (XXII1.19), (XXIII.21), (XXIII.22), (XXI11.23), (XXII1.27) — the system
of equations of the Silin hybrid model.
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ANNEX XXIV
ANOMALOUS OSCILLATIONS OF THE COEFFICIENT OF REFLECTION
OF AN ELECTROMAGNETIC WAVE FROM A PLASMA SURFACE [XXIV-1]

Intense electromagnetic fields acting on the plasma surface lead to significant
oscillations of the electronic component. Let us consider fairly cold plasma. The nature
of the effect of such an external electromagnetic field on the surface of cold plasma
is described in the book by V. P. Silin [XXIV-2]. Let us generalize this approach to
the case of a self-consistent description of the effect of external electromagnetic
radiation normally incident on the plasma boundary with the excitation of a wide
spectrum of surface oscillations.

Let the electromagnetic wave be with components (0, Hy, EZ), where
|H, |H E, |=E, is normally incident on the plasma half-space (x <0) with an

unperturbed constant plasma density n,. Moreover, the intensity of the field of the

incident wave will be considered large enough (E; >4zn,T.) and the thermal
spread of plasma electrons will be neglected. For perturbations of the surface
P

charge density o, =lim jnadx where e ,m_,n  are the charge, mass and
-p

perturbed charge density of the particles of the variety, we can use the system of
equations [XXIII-2]

p—0

. : o @’
explia,, -sin(ayt +¢)]- PR D Vs =0 (XXIV.1)
Vit
where Vo =€, 0, eXp[—ia,, sin(@yt + )], a,, =en-E (k, =0)/mac,

. =4re’n,/m,, @)+ @ the phase of the field k. =0 in the plasma, @, is the
frequency of the incident wave. The wave number of such disturbances are
k., =naw, / c. The solution (XXIV-1 will be sought in the form of series

~+00
Vay = D, US) - expliso,t} (XXIV.1)

When describing surface ion density perturbations, only the first member
of the series can be retained. The summands for v, , proportional to exp{tiw,t},

exceed the other members of the series, however, for correctness, it is necessary

to keep the terms corresponding to the “zero” and second harmonics. We restrict

. . . . . 0 0 . .
ourselves to taking into account symmetric perturbations of ions ufn) =ui(7,:; in this

: O _, 0 @2 _ () @D @) o Oy, (D
case, relations hold u,’ =u, ., u,~ =u =—u, ), (u,) Y =u," .

The self-consistent generalized system of Silin’s equations, taking into
account the inverse effect of the field of the excited short-wavelength spectrum
of surface oscillations on the reflected wave (the parameters of the incident
wave obviously do not change), has the form:
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du 1) .
7;”(9” —iANwy)u,, = i70J1 (a,)-u, expiip}, (XXIV.2)
d*u,, m, : . :
- =—0,—J\(a,)[u, expi-ip} +u, explip}] (XXIV.3)
dt m,
D(R-R )——EZum[J (a,)-u, explipt—J,(a,) u, expi—ip}], (XXIV.4)
en,E, %
where 14+ R =1+ R|exp{—ip} =a, exp{—ip}/ B,n, o, =(1-4A) o, /2,
B, =2eE,/ m,cw,, R,=-D,/D,, D, ~f g C g, =1-w, /o,
KO a)O
Ko =-wje,lc’, A =(m/m)”A R is the amplitude reflection coefficient

(M (0)
U, =u, ,u, =u, .

The terms are proportional to J (a) and J,(a,) correspond to the

contribution to the nonlinear interaction, respectively, the “zero” and second harmo-
nics. From the equations of the system (XXIV.2) — (XXIV.4), we can obtain the relation

l6x 1 dlu, |’
- |R P=—2F el 120 |u,
IR | B cE. Z (e u,, [*), (XXIV.5)

which is the law of conservation of energy.
For the numerical solution of equations (XXIV.2) — (XXIV.4), let us pass

to the variables z':(m Im) ap, 6, =nb(m,/m) w, u,du, lexplip},

,=4n(m,/m) B, | A7, M, =4z(m, /m)"E|u

1/2

m |

The features of the attenuation of
surface waves are such that it grows with
increasing wave number of oscillations
[XXIV-3]. In the process of instability deve-

lopment, the phase spread @, rapidly
decreases over several units 7, forming
regions of surface electron and ion density
of rapidly decreasing scale. The same mode
locking effect leads to a strong interaction
of the short-wavelength instability spectrum
Fig. XXIV.1. The reflection coefficient ~ with the reflected wave and gives rise
R and the field in the plasma AE, to significant oscillations of the reflection
for 6, =0 and @, =0.02 XXIV-1] coefficient for small d|33|9at|on in the interval
R=0.5+1.3. The spatial spectrum of the
instability narrows accounting for losses, reduces the integral energy level of the
spectrum, delays the development of instability, and when the reflection coefficient
fluctuates, the latter does not exceed unity.

0
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ANNEX XXV
PHASE TRANSITIONS IN THE PROCTOR-SIVASHINSKY MODEL
UNDER THE CONDITIONS OF DEPENDENCE OF VISCOSITY
ON TEMPERATURE [XXV-1]

During substitutions T-&* =t, for slow amplitudes Aj in the absence of noise,

we can obtain the mathematical expression of the Proctor-Sivashinsky model to
describe convection

o4, v )
a A =74, 4, _ZEVU |41 4, (XXV.1)
where the interaction coefficients are determined by the relations

v, =1
v, = (2/3)(1 _ 2(/2,./€j)2j = 2/3)1+2cos2 9)

and 4 is the angle between the vectors k; and kj with the initial values of the
spectrum amplitudes, and 4, |,_,= A].O, 8, =27/3. The solution (XXV.1) will be

presented as before in the form ® = gz A; exp( ilgjf) of |l€j =1.

7
Soft mode of excitation of a hexagonal convective structure. The
account of the temperature dependence of viscosity demonstrates the possibility of

realizing soft (at ¥ < 0) and hard (that is, with setting the initial perturbation
already in the form of the desired structure 20 % higher average values of the
amorphous state at y > () excitation of hexagonal convective cells, the state

function of which is almost equal to the state function of the shaft system. The time
of the structural-phase transition of the first kind from the amorphous state is
practically the same. For negative ¥ < 0, the mode of soft excitation of hexagonal
convective cells is observed, as in the Swift-Hohenberg model (see Fig. XXV.1)
The time interval of the first-order phase transition is equal to z,, however,
despite the fact that the values of the state function are equal to unity, which in the
former case of the absence of temperature dependence of viscosity y =0
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Fig. XXV.1. Value behavior ZA (upper curve)

and 52 A*/or depending on its time derivative T
in the mode soft excitement with 7 =—0.25

Fig. XXV. 2. Instability spectrum dynamics
in soft instability mode (y =—0.25)
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Fig. XXV. 3. The initial state of the mode spectrum
against the background of the amorphous state
of the system before a phase transition

in a gas medium (y > 0)

J

corresponded to a system
of conwvective rolls, a sys-
tem of hexagonal cells is
formed here, as it can be
seen in Fig. XXV.2, which
shows the dynamics of
the instability spectrum.
Hard mode con-
vective hexagonal struc-

ture. In the case 7 > 0,

the regime of only hard
excitation is possible, that
is, the initial conditions
must be specified in the
form of hexagonal con-
vective perturbations, cle-
arly expressed against
the background of fluc-
tuations. Under these
conditions, all process
characteristics are similar
to the case of soft exci-
tation at the same values

¥al Otherwise, the dyna-

mics of the process, even
in the case of nonzero
y >0 is similar to the

case of the absence of
the dependence of visco-
sity on temperature, dis-
cussed above.

To implement the
hard regime against
the background of an
amorphous state, a struc-
ture was formed, its
amplitude was 20 %
higher than the average
mode amplitudes (see
Fig. XXV.3)

The behavior of

the state function Z A7
and the time derivative

52142 /0T is shown in Fig. XXV.4 and fig. XXV.5 respectively.
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Fig. XXV. 4. The behavior of the value Z A* depending on time T

in hard excitation mode at ¥ = 0.2
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Fig. XXV. 5. The behavior of the value 52/12 / 0T depending on time T

in hard excitation mode at y = 0.2

The dynamics of spectrum formation is shown in Fig. XXV. 6. The values
1< j <100 correspond to the values of the angle 0 < 3 <27 . The appearance

in the spectrum of three modes shifted by 27/3 corresponds to the formation
of hexagonal cells.

Fig. XXVI. 6. Instability Spectrum Dynamics
in hard instability mode (y = 0.2 )
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ANNEX XXVI
DEFECTIVENESS CRITERIA OF SPATIAL
PERIODIC STRUCTURES

Spectral and visual defectiveness’s. It is useful to connect the discussion of
this issue with the process of the formation of a stable state — a stable structure of
convective cells. In the process of forming the structure of convective cells we shall
study the dynamics the “spectral
0254 . imperfection (defectiveness)” of

the structure D=>a’ 2
. .\\ ];Lza] /ZI a,
\\'\'\ based on the ratio of the squared

0,15 - \.\ amplitudes of the spectrum

. modes that do not correspond to
the system of square cells to the
total sum of the squared modes.

0,05 - \.\.d Also we shall study the changes

of so-called “Visual defective-
ness” d=N,, /N, where N, is

5 45 80 92 s s ss s0 s o4 5 s the number of defective spatial
Bpems cueTa t cells (the area of the structure

occupied by irregular cells) and N

is the number of cells in an ideal
regular structure (total area of the
structure) [XXVI-1, XXVI-2].

The criteria by which to consider the cell correct and the method that allows
calculating the number of these cells are as it follows. The resulting picture for the
field is converted to 8-bit image mode. That is, the maximum number of displayed
colors is reduced to 256. Thus, the formed structure becomes more clearly distin-
guishable. When enlarging such an image, one can quite clearly distinguish which of
the structural units is the correct cell we need and which is not. The correct cell has a
regular geometric shape with a uniformly dark center and four heights commensurate
with the center in size of a lighter uniform color. Despite the qualitative nature of the
description of the quantities, characterizing the spectral and visual imperfection of the
structure, one can note (Fig. XXVI.1) their similar behavior when approaching the
completion of the structural transition.

External noise and instability of system boundaries. Let us make a few
comments regarding the implementation of the discussed process development

scenarios. In case of a sufficiently high noise level, both additive (f = 0) and

OedextHocTe D 1 d
|

Fig. XXVI.1. Comparative analysis
of spectral D and visual d defectiveness.
The number of mods is 50

multiplicative (the random component in the first term g? of the right-hand side of
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(22.4)), the level of mode amplitudes from the very beginning can turn out to be
significant. The initial conditions can also be such that the starting state of the
system can be considered “amorphous” with a high degree of disorder, that is, if the
amplitudes of the perturbations are sufficiently large and differ from each other
according to a random law.

It is important to find out at what noise levels it is possible to maintain the
“amorphous” state, characterized by the presence of a large number of spatial modes.
Apparently, noise of very high intensity can prevent the system from forming
convective structures, but the results of numerical calculations indicate that noise
of even noticeable intensity is not able to prevent the formation of successively
metastable (shafts) and stable (square cells) states. On the contrary, with a significant
decrease in the amplitude of the noise, the process of transition from a metastable to
a stable state is able to slow down when the system is delayed for a long time
(“frozen”) in a metastable state. This is consistent with the ideas (see, for example,
[XXVI-3]) that in some cases, it is noise that contributes to structural transitions.

The effect of the instability of the boundaries of the convection region is more

interesting; it can be qualitatively modeled by changing the angle ‘91-; between the

vectors, which determine here the full set of functions that describe this boundary-
value problem. The account of this effect, as it was noted by |. V. Gushchin, showed
a much stronger effect of the instability of the system boundaries on the develop-
ment of convection as a whole and on the nature of structural phase transitions.
The models under discussion with a rather small modification are of interest for
widespread use for the purpose of simulation modeling of processes of formation
of structures and second-order phase transitions.

The presence of a larger number of minima at the period of the angle change
(for example, six) will ultimately lead to the appearance of a spatial structure in the
form of a polyhedron inscribed in the unit circle with a large number of edges
(hexagon). By changing the spatial structure of local potential minima and their
magnitude, it is possible to achieve the formation of any symmetric spatial structure,
moreover, observing successively the formation of metastable states and all stages of
structural transitions. This makes it possible to use a model modified in a similar way
for a qualitative description of the processes of formation of at least two-dimensional
spatial structures in systems where there is one distinguished scale, in particular,
in condensed matter.
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ANNEX XXVII
ON THE APPLICABILITY OF THE PROCTOR-SIVASHINSKY-PISMEN
MODEL TO THE DESCRIPTION OF THE MODULATION INSTABILITY
OF THE DEVELOPED STRUCTURE OF CONVECTIVE CELLS

Despite the fact that the Proctor-Sivashinsky-Pismen model [XXVII-1] was
derived for Prand numbers for the order of unity, it turns out to be true for
describing the evolution of the developed structure of convective cells, for which, as
shown before ® oc ¢. Moreover, the modulation instability of this structure arises
only at small Prandl numbers [XXVII-2].

The fact is that when deriving equations (23.1) and (23.2) above, it was

assumed that 7/-‘1’067/-CI)2 ocg?, in this case yocl. When considering the
modulation instability of the developed structure of convective cells, it turns out that

non-zero values are W oc (%kj-d)z , Where in its turn (&j oc ¢. Thus, the model

[XXII-1] can be used to describe the modulation instability of the already developed
structure of convective cells only when yocl/g, since only in this case the

condition y -V oc &” is satisfied.
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ANNEX XXVIII
SEMICLASSIC SUPERRADIATION MODEL

At the end of Section 13, we considered the interaction of emitters with the
field of a waveguide or resonator, and the emitters did not directly affect each other.
In this case, each emitter generates its eigenfield, acting on other emitters. This
interaction mode, with emerging self-synchronization of field generation sources,
can be considered a superradiance mode.

Let us consider the behavior of quantum emitters, the wave functions of
which do not overlap and their interaction is determined only by the electromagnetic
field. In this case, a semiclassical description model based on the use of a density
matrix is applicable. Neglecting relaxation processes, the equations for the compo-
nents of the density matrix can be written in the form

d 2i
E(paa_pbb)z_g[dbapab_dabpba]E’ (XXV|||1)
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where the electric field is represented in the form
E+E*=A(t)-exp{—iax}+ A*(¢)-explicx} , and the rapidly changing polarization of one

emitter has the form d, p, +d_, P, . From p,=p,e ™ =p,e™ let us determine

slowly varying quantities for the polarization p =4, -p,, and 4,0, =d*, p*,=p*
of the emitter and also let us write down the system of equations for the inversion of
one emitter 1 =(p,, —p,,) and p:

d 2i _ _ 20 _ _

E(pm — Py) = —%[dbapabA *—d 0, A] = —;[pA *—p*A], (XXVII.3)
L5t o —pu)ldy, I 4 XXVIII.4
dt h aa bb ba . ( . )

The equation for the field of an individual radiator is
O’E 0’E o
- = =4’ - p-e’”-5(zy), (XXVIIL5)
ot 0z
whence we can find the value
1'27Z-a)M 1 — iklz—z.
A(z,t) =—WZP(2SJ)-€" | (XXVIIL6)

where M =n,-b is the total number of emitters, and 7, is the density of emitters

per unit length. From equations (XXVIII.1) — (XXVIII.2) we can obtain a system of
equations for polarization and inversion of the j-th emitter

d 20 _ —
E(paa_pbb):g[p*A—pA*], (XXVIIL7)
d _ I 2
o :—E(p(m -p)ld,, [T A4, (XXVI11.8)

using the ratios P, =P(z,,7), M, =M(z,,7), and also t =(p,, —p;) is the

inversion of an individual radiator 4, = 1;(z =0), where u, = u,, -n, is the initial

2 _
inversion per unit length Z=77Z-Z, U=ty - M, pz‘dab‘-,um-P, t=tly,

2

I, :&, ny-b=M, y = 2ﬂ'w'|dl"lh Ho 1o is the process increment, let us
write th7; system (XXVIII.7) — (XXVII1.8) icn the form

%M, ==2:[PFA; + A, (XXVIIL9)

in =M, -A,, (XXVIIL.10)

dt
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where for A; =A(Z,,7) the relation

1 i27Z-Z|
A(Z,f)=ﬁZP(Zs,T)°e (XXVIILA1)

is true. The last expression can be represented as A(Z,7) =|A(Z,7)|-¢”* | It should
be borne in mind that for the dimensionless representation of the field we divided
(XXVIIL.6) by yHh/ \dba . Then, for the total amplitude of the electric field in this

normalization, the expression 2|A(Z,T)| is valid. It is important to note that the

growth rate 7/:27r-a)-|dba|2-ym-no-b/hc in the semiclassical model of

superradiance corresponds to the growth rate of dissipative instability y =7, /5,
(see Section 13).
For 4000 emitters distributed at the wavelength at P,(z =0) =P exp(ip),

@ is a random variable ¢ < (0+27) P,=0.1  M(r=0)=1, I',=0, we

obtain the following results of the numerical solution. In fig. XXVIII.1, XXVIIl.2 we
show the time dependences of the field amplitude to the left, to the right of the system
and the maximum inside the emitter and the average inversion of the system.

E M

0.4

0.2

0

0 10 20 T
Fig. XXVIIl.1 Field amplitude versus time Fig. XXVIII.2 Dependence
1-max(E(Z,7)), 2-E(Z = 0,7), of the mean inversion of the system
V4

1 .
3-E(Z=17). M = ﬁzjl M(Z,,r) on time

As it can be seen from figures XXVIII.1, XXVIIIl.2, the energy of the inverted
system is pumped into the field. The field strength has two approximately equal

maxima at times 7 =13.2 (E=0.52)and 7 =15.8 (E=0.555). The first maximum
is on the right edge of the system (Z =1,), the second one is on the left (£ =0).
This asymmetric behavior of the field is associated with the choice of the initial
conditions. Since E=+/N, where N= 45} 172 (N 1) N=<FE > lArho
(see the notation before formula (13.31)), the two values of the maxima in Fig. XXVIII.1
correspond to values N equal to 0.27 and 0.31, respectively.
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INSTEAD OF CONCLUSION

Every person who is keen on science would like to write what occurred to him,
what he/she planned and what he/she managed to do independently and with the help of
his/her like-minded colleagues. But, definitely about what he/she was directly involved.
The search for new phenomena, effects and knowledge is the whole meaning of life in
science. The reward for exhausting work will be the attention of a few colleagues, who
showed interest, or perhaps recognition of the author's involvement in the achievements
that will be noticed by contemporaries or already descendants.

More often, the achievements of individual scientists and even collectives are a
part of separate constructions of the theory being created or already created. Their
contribution becomes noticeable by colleagues and has a chance to get into textbooks
only if these constructions bear the main load and ensure the stability of “the theory
building”, and of course, if these achievements prove to be clearly useful in the creation
of other theories. That is why it is especially important to achieve the completeness and
consistency of the theory, the completion of its construction, which is rarely possible and
only then deserves the recognition of the scientific community.

Only those topics are included in the book, which drove into thoughtfulness,
which obscured ordinary life, and if it happened to see and understand something early
and more clearly of other people, who were equally enthusiastic, ambitious and was lost
for the outside world, it was only because they had to spend a little more vitality and
time. Although luck, capricious and inconstant, sometimes glancing favorably, didn’t
even suggest, but rather hinted where to stop and look around. And only when the
discovered and thought over meanings, like good wine matured in numerous
discussions, it is worth undertaking writing books. And then we can hope that both the
author and the reader will feel the taste of awareness of these meanings and the
satisfaction of this awareness.

The author does not expect the reader to read carefully the book from
beginning to end. It is quite enough if each of those who opens this book will find for
him/her at first something interesting and then useful. Even the author does not know
what will turn out to be the most curious, as everything in this life is subjective, even
the recognition of truth, of true knowledge. The only question is how many fans the
true knowledge and the truth will find among us.



VY KHM31 PO3IJISIHYTO CHOHTaHHE 1 BUMYILIEHE BHUIIPOMIHIOBAHHS YaCTHHOK
1 xBWIb. BuBYaeThcs (OpMyBaHHS KOT€PEHTHUX IMITYJbCIB MOOIM3Y BHSBICHOTO
HOBOT'0 TIOpOra 1IHAYKOBaHOTO BUIPOMIiHIOBaHHS. [lokazaHo, Ik MOTyJISILIIHI HECTIi-
KOCTI TIOPOJIKYIOTh CaMOIIO/I0HI CTPYKTYypu W aHoMasibHI XBWil. [IpeacraBieHo
TIOPIBHSHHSA JUHAMIKM HECTIMKOCTI JICHTMIOPOBCHKMX KOJIMBaHb B IUIa3Mi 1 Harpi-
BaHHs 10HIB y mojensax CutiHa 1 3axapoBa. Posrisigaerscsi TypOyJIEHTHO-XBUIILOBA
HECTIMKICTB 1 IPEJICTABICHO HOBUH MmiiXia A0 onucy edexkty Mecbayepa. BinznaueHo
MOTIOHICTh MPOIIECIB CYNEPIFOMIHICIEHITIT 1 JUCUTIATUBHOI HecTikocTi. Jlocmimky-
IOThCS CTPYKTYpPHI INEPeXOJy B KOHBEKTHBHOMY IIapi 1 BUHUKHEHHS BEJIMKOMAC-
IITa0OHUX BHUXOPIB MPHU MOIYJILIMHOI HECTIMKOCTI PO3BMHEHOI KOHBEKII M 1HIII
aKTyaJibH1 3aBAaHHA. J[J1s1 (haxiBIiiB, aCHipaHTIB 1 CTyIeHTIB (i3UYHKUX (aKyJIbTETIB.
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