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Induced particle transport by applying perturbations of the magnetic field with low poloidal “wave” numbers is studied by means of 

computer simulations. Reversed-shear operation regime for tokamaks is considered. The dependence of drift rotational angle 

transform profile on particle energy is calculated. The range of particle energies corresponding to reversed shear profile is defined.

The removal of helium test particle from the plasma core to the periphery is demonstrated.   

KEY WORDS: particle motion control, estafette of drift resonances, reversed shear tokamak, guiding center equations, computer 

simulation.  

The development of fusion technology requires methods of particle motion control. They are necessary for 

different tasks in modern experimental devices. The conversion of trapped particles into passing ones with the goal to 

reduce neoclassical transport, the removal of the impurities, particle injection are the most important among them. 

Fusion reactor also needs an effective method of helium ash removal.  

ESTAFETTE OF DRIFT RESONANCES 

One of the methods to control particle motion in toroidal magnetic traps with rotational transform is the usage of 

drift islands. It is well known, that mode-m magnetic islands can appear at the magnetic surface with rotational 

transform angle /n m , when a magnetic perturbation with “wave” numbers m and n is present. The drift islands are 

shifted with respect to magnetic islands. The magnitude of this shift depends on the energy of the particle W  and both 

the magnitude and the sign of pitch velocity ||v / v . The position of drift islands depends on the poloidal magnetic field. 

The width of the drift islands depends on the amplitude of the perturbation and magnetic shear. 

There are several methods to control particle motion proposed up to date. Fruitful idea was proposed by Mynick 

[1]. The method utilizes single-harmonic, ‘rotating’ magnetic perturbation with low poloidal wave number n:
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Here bmn is amplitude of the perturbation,  is poloidal angle,  is toroidal angle, n and m are poloidal and toroidal 

“wave” numbers respectively. The perturbation induces a chain of islands with radial position resr  dependent on 

frequency . The resonance condition takes the following form 
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Here *  is the drift rotational angle transform, R is the major radius, ||v  is the mean parallel velocity. If is varied in 

time slowly enough, a particle starting inside an island will move adiabatically with that island. The method was 

studied experimentally at Compact Auburn Torsatron (CAT) [2]. It was shown that frequency sweeping resulted in 

radial motion of the test particles.  

Another idea is ‘drift island motion concept’. The ‘drift island motion concept’ represents the idea of keeping the 

drift rotational transform of passing particle of a certain energy and pitch velocity in resonance with the magnetic 

perturbation field during the motion of the particle, and to control the position of the drift island through the cross 

section in time [3].  

Foregoing methods deal with non-stochastic motion of the particles. At the same time methods utilizing stochastic 

motion are developed also [4,5].  A.A. Shishkin in his work [6] advanced the concept of the estafette of drift 

resonances.

The main idea of the estafette of drift resonances (or the relay-race of drift resonances) is overlapping of the 

adjacent resonance structures that leads to stochasticity of particle trajectories. By consecutive overlapping of the drift 

islands it is possible to remove a particle from the center of the confinement volume to the periphery of the plasma.   

This method was applied to particles confined with a stellarator type field with the drift rotational angle growing

monotonically from the center to the periphery [6]. In this paper the estafette of drift resonances is used for helium ash 

removal in tokamaks with a reversed shear. Reversed-shear or negative-central-shear operation is characterized by a 

region where the magnetic shear 

107
«Journal of Kharkiv University»,  No.781, 2007 S.V. Ivko, A.A. Shishkin

physical series «Nuclei, Particles, Fields», issue 3 /35/ Estafette of drift resonances in TOKAMAK ...



r dq
s

q dr
(3)

is negative in the core region. Here q  is the safety factor and r  is the minor radius. Reversed-shear regime is 

promising good confinement with a large fraction of the bootstrap current [7,8]. Reversed-shear profile provides pairs 

of resonances located on both sides of minq . Inner and outer regions have the same set of resonances. That may cause a 

countermotion of the particles. 

SIMULATION MODEL 

Particle motion is described by guiding-center equations. When the external electric field is equal to zero ( 0E )

and the magnetic field does not depend on time these equations can be written as follows
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Equations (5)-(6) can be integrated: 
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From equations (7) and (8) perpendicular and parallel velocities are expressed in terms of initial conditions 
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where initial velocity 0v  and initial perpendicular velocity 0v  are defined by pitch velocity ||v / v , energy W and 

magnetic field initB  at the starting point.  

For simplicity we consider concentric circular magnetic surfaces describing the equilibrium magnetic field 

0
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where 0B  is the magnetic field at the axis, r is the minor and R is the major radii, is the rotational transform angle, 

is the poloidal angle. For the simulation the safety factor 1/q  profile is taken to vary quadratically with the minor 

radius reaching the minimum min 1.85q  at / 0.7r a . The value of minq  was chosen in order to get n=2, m=1

resonance in the region with low magnetic shear. Thus the width of the island would be large.  
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where ,n mn m , the rational magnetic surface with the radius ,n mr  is split and the chain of m  islands appears, 

where n  gives the periodicity along the torus. 

SIMULATION RESULTS 

Drift rotational angle transform depends on the energy of the particle. Reversed-shear profile is realized only in a

certain range of particle energies. It was found that the shear in the central part is increasing and it becomes positive 

from negative with the growth of energy. Drift rotational transform profiles for different values of particle energies are 

shown in Fig.1. 
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Obtained data was used for choosing particle energy in further simulations. In order to involve lower n resonances 

into the estafette the strongly reversed-shear profile was chosen, corresponding energy value is 15 keV. Drift rotational 

transform profile for this energy is shown in Fig.2. Drift rotational angle transform profile makes possible the usage of 

wide set of resonances. In this work we consider only two resonances 1/3 and 1/2. 

Under the set of perturbations 3

3,1 3,13, 1, 2 10 , / 2m n b T  and 3

2,12, 1, 3 10 ,m n b T

2,1 / 2  resonant surfaces are split into a chain of islands (Fig.3). Let us consider the mechanism of the estafette of 

drift resonances. The perturbation of the magnetic field with the poloidal “wave” number n and the toroidal “wave” 

number m splits the resonant drift surface with the drift 

rotational angle transform mn /*  into a chain of drift 

islands. If the amplitude of the perturbation is not large,

the trajectories of the particles are not stochastic. We get 

the chains of drift islands isolated from each other the by 

drift surfaces, which may be deformed, but still are 

existing (Fig.4). With the growth of the perturbation 

amplitude the drift surfaces between the chains of islands 

are destroying one after another. When the amplitude is 

large enough, the last drift surface is destroyed and an 

ergodic region is formed (Fig.5). A particle can travel 

stochastically through the ergodic layer from one 

resonance to another. That is called the overlapping of the 

drift resonances (Fig.6). By consecutive switching 

perturbations on and off at certain moments of time we 

manipulate the overlapping of the drift resonances. The 

particle starts moving from the chain of islands at the 

plasma core consecutively passes to the next chain of 

islands at the larger radius. Thus passing from one 

resonance to another it moves from the plasma core to the 

edge. This process is similar to the relay-race (estafette), 

where particle is a stick and drift resonances are runners. 

The estafette begins at initial time taken as 0t  at 

43 , 0, 0
start start start
r cm . This point is lying on the

resonant surface with drift rotational transform angle 

* 1/ 3 . Initial perturbation amplitude is chosen as 

follows: 3

3,1 4 10b T . When 224t s  perturbation 

3

2,1 6 10b T is switching on, causing the growth of 

radial deviation of the particle. At 543t s after the 

beginning of the observation, radial deviation reaches a 

maximum and the perturbation 2

2,1 1.8 10b T  is 

amplified. After that the particle is moving through the 

resonant structure with * 1/ 2 . Then at 2490t s the 

Fig.1. Drift rotational transform profiles for different values of 

particle energies. 

Fig.2. Drift (solid line) and magnetic (dotted line) rotational 

angle transform. 

Fig.3. Drift islands. 

Fig.4. Isolated islands. 
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perturbation 3

2,1 6 10b T is reduced and 2

3,1 1.2 10b T is amplified. When the radial deviation reaches a maximum 

at 5017t s , all perturbations are switching off leaving test helium particle at the periphery. Thus the test particle 

was removed from the plasma core to the edge (Fig.7). 

Fig.5. Stochastization of the trajectories Fig.6. Overlapping of the resonances 

Fig.7. Estafette of drift resonances: 

a) time dependence of the perturbation amplitude;

b) time dependence of the radial coordinate of the test particle;

c) traces of the test particle trajectories in poloidal cross-section.
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CONCLUSION

The dependence of the drift rotational transform angle profile on particle energy was investigated. It was shown 

that only particles with energies lower than 60W keV had drift rotational transform angle with a negative central 

shear. The estafette of drift resonances as the method of selective transport of the particles from one plasma radius to 

another was developed for a tokamak with reversed shear. A number of potential applications of this method needed for 

a tokamak reactor have been noted, perhaps the most demanding of which is ash removal, the principal focus of this 

work. Numerical simulations demonstrated how the estafette of drift resonances could be used for helium ash removal 

in tokamaks with a reversed shear. In order to enhance the evidence some more issues can be taken into account in 

future. The statistic for particles with different initial conditions enclosed in some volume in phase space should be 

obtained. The influence of Coulomb scattering on particle motion will be also investigated with Monte Carlo method. 
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