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MODELLING OF LAMINATED GROWING BIOLOGICAL MATERIALS 

Kizilova N.N., Egorova E.S. 

 

The continued model of the multilayered plate from a growing biological material is 

presented. Introducing the Airy's stress function the problem is reduced to differential equation of 

the fourth order. Solution of the problem is obtained for the two-layered plate with a rectangle 

cross-section. For some relations between the rheological coefficients of the model the governing 

equations are simplified and the corresponding theoretical estimations are obtained. Numerical 

calculations of the stress and velocity fields for the model parameters that correspond to the 

growing plant leaves are presented. Any difference in own growth rates of the adjacent layers leads 

to stretching of the tempered layer and compressing of the rapidly growing one that results in 

growth acceleration of the former and growth retardation of the latter. Thus the mechanical stress 

field can regulate coordinated growth of the laminated biological materials.   

Key words : continuous media, growing biological materials, laminated composites. 

 

INTRODUCTION  

Growing material is a new sort of composite materials whose mass increases with the time due 

to absorption of new substances on the distributed system of inner surfaces and on the outer 

surfaces of the body. The models of growing composites resemble plant and animal tissues and new 

substances are delivered by liquid flow which is provided by special long-distance conducting 

systems. During individual growth and development, natural materials obtain optimal mechanical 

properties [1,2] which can be thoroughly investigated and embedded then into artificial composite 

materials to improve their mechanical strength and durability. The growing materials can absorb 

new mass in accordance with principals of the stress tensor that leads to strengthening of the 

growing body in the line of the external loading and formation of lightweight materials. 

Engineering applications of the new sort of adaptive materials might very useful.   
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Mechanical factors play an important role in the growth of plant and animal tissues. Stimulating 

role of the stretching loadings and oppressing role of the compressed ones have been confirmed in 

numerous experiments [3,4].  Applied to the bones the phenomenon has been used in clinical 

practice in Ilisarov-apparatus for ostheosynthesis. The method can control the growth and shape of 

the bone. For plant tissues the role of the mechanical factors in control over the growth processes 

has not been sufficiently investigated. In contemporary mechanics the growing materials are 

considered as two-phased viscoelastic continuous media which consist of a deformable porous 

skeleton (totality of the cell walls) filled with viscous liquids (intracellular and extracellular fluids). 

The extracellular fluid that is transported through the conducting elements of the plant provides 

continuous flux of new substances which is absorbed by the porous skeleton (onto the distributed 

system of surfaces of the solid phase) due to biochemical reactions. 

Three different types of growth can be distinguished in biological materials [4]: 

1. Inner growth, when mass increase is observed on the inner surfaces of the pores only. The 

specimen is at zero-stress state ( 0=σ ) in this case and its volume does not change. The 

porosity θ  decreases due to mass deposition on the surface of the pores (fig.1 a,b). Dur ing 

inner rebuilding the substances can be removed from one pore to others at const=θ .  

2. Volumetric growth, when mass increase of each infinitesimal element leads to deformation 

of the adjoining elements and the whole specimen (fig.1à,c). The inner structure of the 

body can be deformed due to stress field 0≠σ . The shape of pores can be changed by 

growth deformation at const=θ . 

3. Surface growth, when mass increase takes place on the outer surface of the specimen only. 

Deformation of the sample is absent, 0=σ .  

In the nature different types of growth are usually mixed. For instance the surface growth can 

be accompanied by inner re-building of body structure as well as the volumetric growth can be 

combined with mass deposition on the outer surface and distributed inner surfaces of the porous 

body. The same classification is valid for the opposite case of mass decrease. 
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        a    b       c    d 

Fig. 1. Main types of growth of biological media:  inner growth (b), volumetric growth (c), 

surface growth (d); (a) is initial cross-section of the specimen, 1Ã  and 2Ã  are outer surfaces at 

different periods of time, V
r

 is growth velocity. Initial material and new-grown one are highlighted 

by light-grey and dark-grey respectively.  

 

Mechanical processes are involved in growth, development and reconstruction of plant 

tissues. In the pictures of cross-sections of growing plant leaves at different development stages 

some separate cellular layers can be distinguished (fig.2). The outer layers (1,4 in fig.2) consist of 

epidermal cells. During their growth the cells elongate in the direction of the surface of the leaf 

blade. The inner layers (2,3 in fig.2) make the palisade parenchyma (2 in fig.2) and sponge 

parenchyma (3 in fig.2) which have different porosity of the layers during the latest growth 

stages at the expense of cell separation and elongation in different directions. Growth rates of 

adjacent layers differ at certain growth stages. No-slip conditions for the adjacent cells of 

different layers lead to interaction of the layers by means of stress field [5-6]. At early stages of 

leaf development the fast division and elongation of the cells of the outer layers promote frequent 

divisions of the cells of the inner layers without increasing porosity that lead to elongation of the 

palisade cells in the perpendicular direction of the leaf surface (fig 2a,b). At later stages of leaf 

development the fast elongation of the cells of the outer layers results in separation of 

parenchyma cells and increasing porosity of the inner layers (fig.2 b,c) [7-8]. In that way 

mechanical stress field defines the coordinated growth of adjacent cellular layers and formation 
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of special inner structure of intercellular space which is important for appropriate water 

evaporation from the outer cell walls and gas exchange during physiological cellular processes. 

In present paper the continued model of a growing laminated plate which corresponds to growing 

plant leaves is investigated. 

 

  a    b     c 

Fig.2. Transverce cross-sections of the growing leaf at different growth stages (a,b,c). Here 

1,4 are epidermal layers, 2 is the palisade parenchyma, 3 is the sponge parenchyma, 5 is cross-

section of the conducting element. 

 

GOVERNING EQUATIONS 

The strain tensor is considered as an additive function of elastic e
ikε  and growth g

ikε  strain 

tensors.  The elastic strain obeys Gook’s law lm
1

iklm
e
ik E σ=ε − , where iklmE  is elastic module 

tensor, lmσ  is stress tensor. According to various experimental data [4] the growth strains obey 

linear strain rate - stress dependence lmiklmik
g
ik BA

Dt
D

σ+=ε , where ikA  is tensor of own 

growth rates (growth rates at zero-stress conditions 0lm ≡σ ), iklmB  is matrix of reverse viscosity 

coefficients, 1
iklm )sPa(]B[ −⋅= , Dt/D  is time derivative. Rheological parameters ikA , iklmB  

for a given growing material have to be defined by solving the corresponding inverse problem. 
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Rheology of growing material corresponds to Maxwell model with additional term ikA  which 

defines zero-stressed growth. The model has been used for investigation of growth of the plant root 

as a thin long cylinder [9-10], a monolayer of cells [11-12] and multilayered round plate as a model 

of plant leaf [13].  Finally we obtain the constitutive relation for the growing material in the form: 

( )lm
1

iklmlmiklmikik E
Dt
D

BAv σ+σ+= −         (1) 

where 2/)xVxV(v ikkiik ∂∂+∂∂=  is strain rate tensor, V
r

 is velocity of the growth 

deformations. 

 We consider  a two-dimensional problem for the growing plate which consists of two 

rectangular layeres { })]t(h,0[y)],t(L,0[xS1 ∈∈=  and  { }]0),t(h[y)],t(L,0[xS2 −∈∈=  (fig.3) 

with different rheological properties. The axis 0x is chosen as a border between the layers. Due to 

large charachteristic growth time the growth acceleration in the momentum equation and 

momentary elastic deformations in (1) are omitted and in the absence of outer forces the governing 

equations have been taken to be the following:  

 

Fig.3. A two-dimensional model of a two-layered growing plate. 
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where 2,1j =  are numbers of the layers, j
y

j
x V,V  are velocity components, j

ikσ  are stress tensors, 

j
ikA  are own growth rates, j

ikB  are inverse viscosity tensors of the layers. Stretching leads to 

growth retardation down to growth cessation but not to mass decrease that means 0B j
ik =  when 

0j
ik <σ . The boundary conditions are presented by no-slip conditions between the layers, zero-

loading on free surfaces of the body and fastening on the surface 0x =  which correspond to the 

place of attaching of the leaf blade to the petiole: 

0
Lx

j
x =σ

=
  0hy

j
y =σ ±=   0y

2
y,x0y

1
y,x == σ=σ     (7) 

0V 0y
j
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2
x0y

1
x VV

=
= =   0V 0x

j
x ==      (8) 

 ANALYSIS OF ZERO-STRESS GROWTH 

For zero-stress growth when 0j
ik =σ  and (2)-(3) is identically valid, the relations (4)-(6) can be 

considered as a system of equations for the velocity components j
y

j
x V,V : 

j
11
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∂
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Three relations (9) for two unknown values j
y

j
x V,V  give strain rate compatibility condition which 

is the equation for components j
ikA :  

0
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∂
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 Relation (10) is valid for uniform isotropic growth when j
22

j
11 AA = , 0A j

12 =  (fig.4a) and 

for uniform anisotropic growth when constA j
22,11 = , j

22
j
11 AA ≠ , 0A j

12 =  (fig.4 b,c) that 

correspond to growth of different types of leaves (fig.5a,b). Consequent shapes in fig.4 have been 

obtained at a given time step constt =∆ . Growth displacement )u,u( yx  of separate points of the 

consequent shapes in fig.4  have been obtained by  integrating (4)-(5): 

  

a b 

  

ñ d 

Fig.4. Different types of uniform isotropic growth constAAA 2211 ===  (a), anisotropic 

growth  2211 AA >  (b) and 2211 AA < (c), unreal type of growth at 0A,xA,yA 12
2

22
2

11 ===  (d). 

 

∫∫ ∆=∆= dy)y,x(At)y,x(u,dx)y,x(At)y,x(u 22y11x      (11) 

where 22,11A  are growth rates of the plant material in x and y directions. The first type of the 

anisotropic growth ( 2211 AA > ) describes gradual elongation of the leaf (fig.5a) whereas the 

second type ( 2211 AA < ) corresponds to growth unfolding of the basal part of the leaf blade 

(fig.5b). In these three cases  growth deformations are similarity transformations (homothety) that is 
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inherent to many real natural bodies and tissues [1,2]. When the components ikA  do not satisfy 

(10) one can obtain non-realistic growth deformations (11) of the initial leaf- like shape (fig.4d) that 

look similar to growth of leaves of genetically modified plants [14-15]. In the last case the angular 

displacements of different points are different in both values and directions (angles 31−δ  in fig.4d).  

 

 A CASE OF GROWTH WHEN THE SHAPE OF THE GROWING BODY REMAINS 

RECRTANGULAR 

We consider now the growth of the two-layered sample (fig.3) when the rectangular shape is 

maintained by cell divisions in the direction of the system axes 0x, 0y only. In that case the newly-

grown cellular walls are always parallel to the borders of the layers. That kind or growth is possible 

when  

)x(j
x

j
x σ=σ , )y(j

y
j
y σ=σ           (12)  

Applying the derivative x∂∂  to (1) and y∂∂  to (2) and subtracting the two equations we 

obtain the condition of existence of the solution in the form (12):  

consta
yx

j
2

j
y

2

2
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==

∂

σ∂
=

∂

σ∂
 

Taking into account (6) we obtain the solution:  

)xL(b)xL(a j22jj
x −+−=σ   

 )hy(c)yh(a j22jj
y m−−=σ           (13) 

jjjjj
xy dybxaxya2 +++=σ  

Substituting (13) in (4)-(6) and integrating the first relation by x and the second one by y we have: 
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Substituting (14) into (6) we get the condition of existence of (12): 

0BBB2 j
21

j
12

j
33 =++           (15) 

Then from (14) and the boundary conditions (8) we obtain 

)xL(a 22jj
x −=σ , )yh(a 22jj

y −=σ , xya2 jj
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 When constAA j
22

j
11 == , then continuity conditions (8) for the velocities j

xV  at 0y =  

gives 0a j ≠  when 2
12

1
12

2
11

1
11 BBBB =  only. In the case stress tensor components are continuous 

0)(
0y

2
y,x

1
y,xy,x =σ−σ>≡σ<

=
 at the border between the layers. Otherwise 

0)BB1(ha 2
11

1
11

21
y ≠−>=σ< . When j

22
j
11 AA ≠ , then the component )y,x(xσ  is not 

continuous and 0x)AA( 2
11

1
11x ≠−>=σ< . Experimental observations of kinematics of growth of 

different types of leaves [2,6,12] revealed three types of growth (fig.4a-c) when j
22,11A  are 

constant values. As a theoretical case any other expressions )y,x(A j
22,11  may be substituted in (16) 

and the values for ja  can be obtained from the continuity conditions (8).   
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GENERAL SOLUTION OF THE PROBLEM 

 When (15) is not valid the general solution of (2)-(8) can be obtained. Introducing Airy's 

stress function jΦ  for the layers and expressions for the components of stress tensor  
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we obtain from (4)-(6) the equation for Φ  as: 

0
yxyx

B
2

yy

B

x

B

xy

B

x

B

yxx

)BB(

yxy

)BB(

xx

B

yy

B
2

x
B

yx
)B2BB(

y
B

j2j
33

2

2

j2

2

j
11

2

2

j
21

2

2

j2

2

j
12

2

j
22

2

2

j3j
33

j
21

2

j3j
33

j
12

3

j3j
22

3

j3j
11

4

j4
j
2222

j4
j
33

j
21

j
124

j4
j
11

=
∂∂
Φ∂

∂∂

∂
+

∂

Φ∂

















∂

∂
+

∂

∂
+

∂

Φ∂

















∂

∂
+

∂

∂

+
















∂∂

Φ∂
∂

+∂
+

∂∂

Φ∂
∂

+∂
+

∂

Φ∂
∂

∂
+

∂

Φ∂
∂

∂
+

+
∂

Φ∂+
∂∂

Φ∂+++
∂

Φ∂

   (17) 

 After integrating (17) the unknown coefficients have to be defined from the boundary 

conditions that can be obtained from (7)-(8) as: 
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Direct solution of the problem (17)-(18) as applied to real animal and plant tissues is difficult 

because of the absence of the reliable values ikB . It might be reasonable that 1BB 1112 ≤ , 

1BB 2221 ≤  which means that any stretching accelerates growth in the same direction. We can 

estimate the order of values ikB  assuming that all terms in (4)-(6) have the same order so as 

*
ikik B~A σ  where *σ  is the threshold stress which influences growth processes at cellular level. 

For plant leaves the characteristic values 1* day1.0~A −  [2,5,6] and *σ ~0.03–0.05 MPa [16] that 

give 111* )sPa(10)42(~B −− ⋅⋅− . Different forms of dependencies )y,x(Bik  in (17)-(18) can be 

considered as theoretical cases only because the real dependencies are connected with the inner 

structure of the body and not investigated yet. When the materials of the layers are kept uniform 

during the growth then j
ikB  are constant values and (17) can be reduced to the equation  

0
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where j
33

j
21

j
12

j B2BBB ++= . We consider here the self-similar growth when the initial 

rectangular cross-section of the plate (fig.3) remains rectangular with )t(h2H),t(LL ==  and 

)y,x(j
y,x

j
y,x σ=σ , )y,x(jj τ=τ . The solution of (19)-(18) can be obtained as expansion 

∑
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 where L/)k2/(k π+π=β . Then the second condition (18) is satisfied when 0//
0 =Φ . Substituting 

(20) into (19) we get the equations for unknown functions )y(j
kΦ  in the form: 
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The solution of (21) is 
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Substituting (22) into (18) we obtain for the unknown parameters j
rkC  the next relations:  
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From the continuity conditions at 0y =  one can get the equations: 
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Substituting (23) in (24) gives the algebraic system for 2
k4

1
k4 C,C . Solution of the system 

can be substituted then in (23). After determining all the coefficients j
rkC  in (22) we finally obtain: 
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where j
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rk /BBZ λβ−λ= . Some results of numerical calculation on (23)-(25) of stress 

and velocity fields are presented in fig.5. For the sake of definiteness simple relations 

{ }1:2;2:1;1:1B:B j
22

j
11 = , { }5.0:1;1:1B:B j

12
j
11 = , *j

21
j
12 BBB == , 0B j

33 =  have been used. 
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e f 

Fig.5. Components of stress tensor )Y,X(2,1
xσ  (a), )Y,X(2,1

yσ  (b), intensities )Y,X(2,1σ  (c) and 

principals of stress tensor (d), velocity field )y,x(V 2,1r  at 0j
ik ≠σ (e) and 0j

ik =σ  (f). Here 

*/ σσ=σo  is dimensionless stress, h/yY,L/x = , L=0.008 m, h=0.002 m, 5.0:1B:B j
12

j
11 = . 

Numbers 1-3 correspond to { }1:2;2:1;1:1B:B j
22

j
11 =  respectively.  

CONCLUSIONS 

 When  growth rates inherent to the layers are coordinated and 2
11

1
11 AA = , a continuous 

stress field accelerates the uniform growth of the body. The x-component j
xσ  which predominantly 

accelerates the growth along the x-axe (fig.5a), decreases with x whereas the y-component j
yσ  

which accelerates mainly the growth along the y-axe, has a dome shape (fig.5b). When 

)x(j
x

j
x σ=σ , )y(j

y
j
y σ=σ  the corresponding dependencies have the parabolic shape (16). Intensity 

of the mechanical stress 2j
y

2j
x

j )()( σ+σ=σ  decreases toward the edges hy,Lx ±== of the 

cross-section (fig.5c). When 0B j
33 =  the principals of the stress tensor practically coincide the 

coordinate axes (fig.5d) and newly-grown cellular walls appear in the directions which are parallel 

to the system axes. Most likely the natural growth does not cause rotation of the cellular walls until 

external shear force is applied to the growing body. When *
ikik /A~B σ  the stress field plays a 



Journal of Mechanical Engineering. 2005. N5(56) 

very important role in the coordinated growth of the layers. When  2
11

1
11 AA ≠ , 2

22
1
22 AA ≠  and 

0j
ik =σ  their own growth rates cause quite different velocity fields in the adjacent layers (fig.5f). 

When 0j
ik ≠σ  the stress field leads to smoothing of the growth differences in the attached layers 

and makes the balanced growth in x- and y- directions (fig.5e).  

Computer simulation at wide variation of the parameters of the model reveal that when the 

adjacent layers grow at different  growth rates inherent to them 2
ik

1
ik AA ≠ , the stretching stresses 

appear in the tempered layer and the compressing stresses in the rapidly growing  one due to the 

attachment of the layers and no-slip condition at the boundary y=0. In accordance with (3)-(5) the 

stress field will stimulate the growth of the tempered layer and impede the growth of the rapidly 

growing one that promotes smoothing of the growth velocity field (fig.5e-f). In such a way the 

mechanical stress can be a long-distance regulator of a synchronized growth of different layers of 

the body that can growth with quite different own growth rates. The mechanism can be imitated in 

the artificial composite materials when the chemical reactions which lead to mass absorption are 

accelerated by stretching and decelerated by compression. The materials can be used in clinical 

practice as adaptable prosthesis and in technology as strengthened adaptive constructions.  
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