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Abstract

A new necessary condition for a set to be the zero set of an ab-
solutely monotonic function is given. If A ⊂ {z : Im z < 0} is the
zero set of an absolutely monotonic function then for any β ∈ (0, π/2)
there exists a nonnegative continuous function hβ, hβ ∈ L1(−∞,−1],
such that ∑

a∈A⋂{a:| arg a−π|<β}

1

(x− a)2
≤ hβ(x).

It is shown that this condition is not a consequence of conditions
known before.

1991 Mathematics Subject Classification 30D50, 44A10.

A function f ∈ C∞(−∞, 0] is said to be absolutely monotonic if

f (k)(x) > 0, ∀k ∈ N
⋃

{0}, ∀x ∈ (−∞, 0]. (1)

The notion of absolutely monotonic function was introduced by S. Bern-
stein [1]. By the well-known S. Bernstein’s theorem (see [2]) the class of
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absolutely monotonic functions coincides with the class of functions repre-
sentable in the form

f(x) =

∫ ∞

0

exuP (du), x ∈ (−∞, 0], (2)

where P is a nonnegative finite Borel measure on [0,∞) . (2) shows that
any absolutely monotonic function f is analytic in C0 := {z : Re z < 0},
continuous in {z : Re z ≤ 0}, and

f(z) =

∫ ∞

0

ezuP (du), Re z ≤ 0, (3)

where the integral converges absolutely for each z. Absolutely monotonic
functions are bounded in the half-plane:

|f(z)| ≤ f(0), Re z ≤ 0. (4)

There is a natural problem to characterize the class of subsets of C0 which
can serve as zero sets of absolutely monotonic functions. Let us mention some
known properties of such zero sets. It is obvious that if A ⊂ C0 is the zero set
of an absolutely monotonic function then A is at most countable set without
accumulation points in C0 and

A
⋂

R = ∅, a ∈ A ⇔ ā ∈ A, (5)

(multiplicities of a and ā are equal). (4) implies that A satisfies the well-
known Blaschke condition for a half-plane:

∑
a∈A

Re a

|a|2 + 1
< ∞. (6)

The following necessary condition not depending on the previous ones was
mentioned in [3]:

dist(x,A) → +∞, x → −∞. (7)

I.V. Ostrovskii showed (oral communication) that the following independent
condition is also necessary:

(∀α ∈ (0, π/2)) :
∑
a∈Aβ

Re
1

x− a
→ 0, x → −∞, (8)
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where
Aβ := A

⋂
{z : | arg z − π| < α}.

In [3] it was proved that any finite set satisfying (5) can serve as the
zero set of an absolutely monotonic function (even of an entire absolutely
monotonic function). We can show that if there exists α ∈ (0, π/2)) : Aα = ∅
and A does not have finite accumulation points then (5) and (6) are sufficient
conditions for a set A to be the zero set of an entire absolutely monotonic
function (to appear). The aim of this note is to obtain one new necessary
condition for zero sets of absolutely monotonic functions, to show that this
condition is not a consequence of previous ones and to discuss some examples.

Theorem 1. Let A ⊂ C0 without finite accumulation points is the zero set
of absolutely monotonic function f(z). Let B(z) be the Blaschke product:

B(z) :=
∏
a∈A

1− z
a

1 + z
ā

. (9)

Then there exists a nonnegative function g ∈ C(−∞,−1]
⋂

L1(−∞,−1] such
that

(logB(x))
′′ ≥ −g(x). (10)

Proof. Without loss of generality we can assume f(0) = 1. So f(z) is an
analytic function in C0, continuous function in {z : Re z ≤ 0} (since A has
no finite accumulation points) and (4) shows that |f(z)| ≤ 1. We shall use
the well-known representation for a function bounded in a half-plane (see,
for example [4], chapt. 6):

f(z) = B(z) exp(kz +
1

π

∫ ∞

−∞
log |f(it)|( 1

it− z
+

it

1 + t2
)dt). (11)

(3) implies the ridge condition for f(z):

|f(z)| ≤ f(Re z). (12)

The ridge condition implies (see [5], chapt. 2) that log f(x) is a convex
function on (−∞, 0], so (log f(x))

′′ ≥ 0 for x ≤ 0. From (11) we have for
x ≤ 0:

(log f(x))
′′
= (logB(x))

′′
+

2

π

∫ ∞

−∞
log |f(it)| dt

(it− x)3
. (13)
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Since |f(it)| = |f(−it)| ≤ 1 we obtain from (log f(x))
′′ ≥ 0

(logB(x))
′′ ≥ 4

π

∫ ∞

0

(− log |f(it)|)Re (
1

(it− x)3
)dt. (14)

That is why

(logB(x))
′′ ≥ −12

π

∫ ∞

0

(− log |f(it)|) (−x)t2

(x2 + t2)3
dt =: −g(x). (15)

It is easy to see that g(x) ≥ 0, g ∈ C(−∞, 0] and
∫ −1

−∞
g(x)dx =

3

π

∫ ∞

0

(− log |f(it)|) t2

(1 + t2)2
dt < ∞. 2

Theorem 2. The statement of Theorem 1 can be written in equivalent form:
for any β ∈ (0, π/2) there exists a nonnegative continuous function hβ ,
hβ ∈ L1(−∞,−1], such that

∑
a∈Aβ

1

(x− a)2
≤ hβ(x). (16)

Proof. We have

(logB(x))
′′
=

∑
a∈A

(
1

(x+ ā)2
− 1

(x− a)2
).

Let us show that

S1 :=
∑

a∈A⋂{a:β≤| arg a−π|<π/2}
(

1

(x+ ā)2
− 1

(x− a)2
) ∈ L1(−∞,−1].

We obtain by elementary calculations

|S1| ≤
∑

a∈A⋂{a:β≤| arg a−π|<π/2}

| − 4xRe a+ 4iRe a Im a|
|x− a|2|x+ ā|2 ≤

∑

a∈A⋂{a:β≤| arg a−π|<π/2}

4|x||Re a|+ 4|Re a||Im a|
|x− a|2|x+ ā|2 =

∑

a∈A⋂{a:β≤| arg a−π|<π/2}

4|x||Re a|+ 4|Re a||Im a|
(x2 − |a|2)2 + 4x2(Im a)2

≤

Cβ

∑

a∈A⋂{a:β≤| arg a−π|<π/2}

4|x||Re a|+ 4|Re a||Im a|
(x2 + |a|2)2 =: g1(x), (17)
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where Cβ is a positive constant depending only on β. Let us show that
g1 ∈ L1(−∞, 0]

∫ 0

−∞
g1(x)dx =

∑

a∈A⋂{a:β≤| arg a−π|<π/2}

∫ ∞

0

4y|Re a|+ 4|Re a||Im a|
(y2 + |a|2)2 dy =

∑

a∈A⋂{a:β≤| arg a−π|<π/2}

∫ ∞

0

4|a||Re a|t+ 4|Re a||Im a|
|a|4(1 + t2)2

|a|dt ≤

∑

a∈A⋂{a:β≤| arg a−π|<π/2}

4|Re a|
|a|2

∫ ∞

0

(t+ 1)

(1 + t2)2
dt < ∞ (18)

(see (6)). To obtain (16) it remains to show that

∑
a∈Aβ

1

(x+ ā)2
∈ L1(−∞,−1].

We have
∫ −1

−∞
|
∑
a∈Aβ

1

(x+ ā)2
|dx ≤

∫ −1

−∞

∑
a∈Aβ

1

|x+ ā|2dx

≤
∫ −1

−∞

∑
a∈Aβ

1

x2 + (Re a)2

≤
∑
a∈Aβ

1

Re a

∫ ∞

0

dt

1 + t2
< ∞ (19)

(we use condition (6) for the case | arg a−π| < β ). Taking into account (18)
and (19) we conclude that the statement of Theorem 1 is equivalent (16). 2

Statement 1. Let {αk}∞k=1 and {βk}∞k=1 be two sequences of positive num-
bers, αk → +∞, βk → +∞, and

∞∑

k=1

1

αk

< ∞, βk = o(αk),
∞∑

k=1

1

βk

= ∞.

5



Assume that there exists λ > 1 such that

αk + λβk ≤ αk+1 − βk+1, k ∈ N. (20)

Then A := {αk ± iβk} does not satisfy condition (16).

Proof. Since A is symmetric with respect to the real axis (16) can be
written in the form :there exists a nonnegative continuous function h, h ∈
L1(−∞,−1], such that

∑
a∈A

Re
1

(x− a)2
≤ h(x). (21)

For any k

Re
1

(x− a)2
=

(x− αk)
2 − β2

k

((x− αk)2 + β2
k)

2
> 0, x ∈ (−∞, αk − βk)

⋃
(αk + βk,∞).

Let us denote I :=
⋃∞

k=1(αk + βk, αk+1 − βk+1) (by (20) intervals (αk +
βk, αk+1 − βk+1) do not intersect). So

∑
a∈A

(x− αk)
2 − β2

k

((x− αk)2 + β2
k)

2
≥ (x− αj)

2 − β2
j

((x− αj)2 + β2
j )

2
, x ∈ (αj + βj, αj+1 − βj+1). (22)

The last estimation imply (see also (20) )
∫

I

f(x)dx ≥
∞∑

k=1

∫ αk+1−βk+1

αk+βk

(x− αk)
2 − β2

k

((x− αk)2 + β2
k)

2
dx ≥

∞∑

k=1

∫ αk+λβk

αk+βk

(x− αk)
2 − β2

k

((x− αk)2 + β2
k)

2
dx =

∞∑

k=1

1

βk

∫ λ

1

u2 − 1

(u2 + 1)2
du = C(λ)

∞∑

k=1

1

βk

= ∞. 2

Example. Using Statement we obtain that Aγ := {−kγ ± ik}, k ∈ N
can not serve as the zero set of an absolutely monotonic function for γ ≥ 2,
but Aγ satisfies (5), (6) and (7). By direct calculation one can see that A2

satisfies (8).
Remark. Taking into account (8) we can rewrite (16) in the form: for

any β ∈ (0, π/2)
∑

a∈A⋂{a:| arg a−π|<β}

1

(x− a)2
∈ L1(−∞,−1].
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