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Abstract The stability of the Poiseuille flow of a viscous incompressible fluid in
a multilayered non-isotropic viscoelastic tube is investigated. The compliant wall of
the tube is allowed to be in a dynamic interaction with the flow. The material and
geometrical parameters of the model correspond to mechanical properties and struc-
ture of the arterial vessels. A numerical method is developed in order to find the
eigenvalues of the system in the limit of the linear stability analysis. Both temporal
and spatial eigenvalues of the system are computed and compared to the eigenvalues
for the isotropic wall. The multivarious effects of the anisotropy on the eigenvalues
of the system are investigated. The influence of the viscosities, shear and Young’s
modulus of the layers on the most unstable mode is examined. In view of the impor-
tance of the result in medical diagnostics, a particular attention is paid to the speed

of propagation of the most unstable mode.

1 Introduction

Mechanical factors and fluid-structure interaction define normal physiological
state and function of arteries and veins. When blood moves through the vessel both
hydrostatic pressure and viscous drag at the wall influence the shape and mecha-
nical properties of the vessel wall. The stress field in the wall determines its inner
structure and geometry of the vessels by control over their growth, development and
remodeling. Active reaction of the smooth muscle cells in the wall is determined by
the shear stress at the inner surface of the vessel. Mechanical factors are involved in
development of different pathologies as fat and calcium deposition in the wall and
the plaque formation, wall thickening, age-induces arteriosclerosis, occlusion of the

vessel and ischemia of the organ or its separate parts.
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When hydrostatic pressure in the vessel becomes lower then the pressure in the
surrounding tissue, the lumen area and the flow rate through the tube decrease.
Stability of the vessel wall and development of the collapse significantly depend on
the mechanical properties and structure of the wall. Fluid-structure interaction in a
stenosed artery can generate oscillations of the downstream arterial wall. Sound pro-
duced by the oscillations can be used as a diagnostic tool for detecting stenosed parts
of the arteries. Although there is an extensive literature on arterial wall mechanics,
our understanding is still far from complete.

Stability of different wall modes in fluid motion through a uniform compliant tube
has been comprehensively investigated in both theoretical models and experimental
studies [1-4|. The results revealed that wall mechanics plays an important role in
transition from laminar to turbulent flow. Complex structure of the wall and different
mechanical properties of its layers can influence stability of the unstable modes. Wall
parameters and viscous stress in a single-layered model were found to stabilize the
unstable mode [5]. Coupling of the inner and outer layers of the arterial wall can
be considered as a reinforced cylindrical shell that might influence stability of the
wall modes in comparison with a uniform single-layered case. In the present paper
stability of the laminar flow of the viscous incompressible liquid in the multilayered

viscoelastic tube as a realistic model of the blood vessel wall is investigated.

2 Three-layered structure of the wall.

The arterial and venous walls are composed of concentric layers with different
thicknesses and mechanical properties. The detailed description of the composite
structure of the layers is presented in literature [7-9]. Here we concentrate on the
recent data on the elastic properties and relative thicknesses of the layers of the

arterial wall in normal and pathological states.

2.1 Intima

The innermost layer is called intima. It consists of a mono-layer of endothelium
cells separated by a thin basal membrane from the sub-endothelium layer. Thickness
of the intima hy =~ 2 — 3 pm [10] and in young healthy subjects the intima contributes
negligibly to the mechanical properties of the artery. With age and in pathological
states its thickness and stiffness may greatly increase. Initial stage of arteriosclerosis
is also connected with thickening and stiffening of the intima. In hypertensive patients
wall thickening is an adaptive process, that finally reduces the increased wall ten-
sion. The corresponding arteries of hypertensive and normotensive individuals have
practically similar internal radii (R = 2.47 +0.32 pm and R =2.41 +0.35 um ac-
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cordingly), whereas thickness of intima relative to the thickness hy of the middle
layer (hi/he) and wall-to-lumen ratio (h/R) where h = hy + hy + hg are signi-
ficantly increased in the hypertensive patients in comparison with normotensive
ones (hi/he = 0.268 + 0.032, h/R = 0.220 + 0.038 and hi/hy = 0.236 £ 0.025,
h/R = 0.195 £ 0.028 accordingly) [11]. For porcine femoral and cutaneous arteries
hi/h = 0.035,h1/he = 0.05 [12].

The endothelial cells are sensitive to shear stress 7, exerted by the blood flow at
the wall. For instance, the cells can align themselves in compliance with the direction
of the flow. The sensitivity threshold of the endothelial cells is 7,, ~ 0.1 Pa. The
intima passes mechanical stimuli into the middle layer. The active response of the
deendothelized and normal arteries on the flow rate differ both in sign and value.
When shear rate at the wall increases due to increasing the blood viscosity from 2.5
to 4.0 mPa - s, the Young’s modulus of the sheep brachiocephalic artery decreases
from £ = 3.11 MPa to E = 2.09 M Pa for the intact artery and increases from
E = 3.16 MPa to E = 4.1 MPa for the deendothelized artery. Elasticity of the
intact artery is defined by the middle layer mainly [13].

2.2 Media

The middle layer makes up the greatest volume of the artery and is responsible for
most of its mechanical properties. The media consists of a complex three-dimensional
network of elastin and collagen fibers, smooth muscle cells (SMC) and proteoglycans.
SMC has a nearly circumferential orientation in most vessels and, when activated,
alters circumferential mechanical properties by constricting or dilating. SMC role is
very important in maintaining the pressure-flow relation in the vessel by increasing
(decreasing) the stress in the wall and decreasing (increasing) the lumen in response
to increasing (decreasing) the blood pressure. SMC contraction as a response to
decreasing the shear rate at the wall is stimulated by the endothelium cells.

The media is separated into several concentric fiber-reinforced layers by the elas-
tic laminae. The number of laminae as well as the inner radius of the vessel gradually
decreases from the aorta toward the periphery arteries. Some arteries exhibit a si-
gnificant correlation between the thickness of the wall A and the media layer ho
[13]. For porcine femoral and cutaneous arteries the relative thickness of the media
ha/h = 0.760 have been found [12].

2.3 Adventitia

The outermost layer is called adventitia. It consists of thick bundles of collagen
fibers, some elastin fibers, fibroblasts, nerves and an intravascular bed (the vasa

vasorum). The adventitia influences the mechanical properties mainly by facilitating
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tethering to the surrounding tissue and by limiting the lumen increase and damage of
the vessel at high internal pressures. Media and adventitia can be considered as fiber-
reinforced composites due to the helical structure formed by the collagen microfibrils
[9]-

Relative thickness of the adventitia depends on the type and position of the
blood vessel. In muscular arteries adventitia and media are of the same thickness
whereas in elastic arteries and in arterioles it is thin. In cerebral arteries adventitia
is practically absent. For coronary artery with wall thickness h =1+ 0.2 mm the
total thickness of intima and media is h1 + ho = 0.34 £ 0.1 mm and of adventitia is
hs = 0.54 £ 0.2 mm [14]. For porcine arteries hg/h = 0.205 [12].

3 Mechanical properties and material parame-

ters of the layers

Experiments with arteries and arterial segments revealed that the vessel wall
exhibits creep, stress relaxation, hysteresis of the stress-strain relationship that cha-
racterize its viscoelastic properties which are quite insensitive to the rate of the
imposed strain. Vessel walls exhibit nonlinear stress-strain dependence, with higher
extensibility in the low stretch range and progressively decreasing extensibility with
increasing stretch. Mechanical properties of passive vessels are defined by parallel
arrangement of elastin and collagen fibers with linear elasticity and circular arran-
gement of SMC in the media. Due to the SMC the wall behaves differently in the
passive and activated states.

The wall material can be treated as compressible when studying fluid motion
within the porous wall, but is considered as incompressible when studying macro-
scopic characteristics on a large time-scale when fluid exchanges between the blood
and the wall can be neglected [15-17]. The wall has different mechanical properties
in axial and radial directions and can be modeled as anisotropic material [17]. Due
to geometry of the vessel it can be modeled as cylindrically orthotropic thick-walled
three-layered tube made of nonlinear viscoelastic material.

The Young’s modulus E; and shear modulus G of separate layers and entire
wall E, G have been obtained for different types of arteries with different radiuses
that makes difficult the comparative study of the material parameters. The shear
modulus of the wall does not satisfy the relation between the Young’s modulus and
Poisson’s ratio v of the classical elasticity theory G = E/(2(1 + v)) [18], so the wall
material is not isotropic and its properties in radial and circumferential directions
differs from its properties in longitudinal direction.

Normally vessels are stretched and fastened to the outer tissues that increases
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their stiffness. Shear modulus of the rat thoracic aorta under physiological pressures
significantly depends on the longitudinal extension A\, and circumferential stress ogg.
For the rat aorta G = 183+25 kPa at physiological conditions (P = 16 kPa, A, = 1.3)
[18]. For the porcine left and right coronary arteries G = 210+46.5 and G = 231+55.1
kPa, respectively at physiological conditions (P = 13.3 kPa, A\, = 1.4). Experimental
study of both rat aorta and porcine coronary artery revealed that shear modulus does
not depend on the shear strain or stress and linearly depends on the circumferential
and longitudinal stresses and in a nonlinear way on the corresponding strains [18-19].
Linear regression coeflicients of the relationship G = « + Bogg have been calculated
for A, = 1.2+ 1.4 [18]. The incremental Young’s modulus for human ascending aorta
is 33-360 kPa [20]. In bovine and rabbit aorta the tangential Young’s modulus is

approximately 20 times greater than the radial modulus. [16].

The relationship between Kirchhoff stress and Green’s strain is approximately
linear within the physiological range for canine pulmonary arteries [21] up to the axial
and circumferential elongations A, = 1.5 — 1.6 and Ay = 1.7 — 1.8 that includes the
physiological region which does not exceed A, ~ 1.2 due to the longitudinal tethering
of the vessels [22]. The stress-strain curves can be considered as linear when the
pressure in the vessel is less than 60 mmHg and as nonlinear with strain-dependent
elasticity modulus for the greater pressures [16]. In spite the tethering the length
of the common carotid artery varies during the cardiac cycle and its movement is

inversely correlated with pulse pressure [23].

Within the framework of the anisotropic single-phase model of the longitudinally
non-stretched wall the Young’s modulus and Poisson’s ratio in the plane of isotropy
(E1,v1) and in the perpendicular direction (Es,vs) are By = 460 kPa, E; = 20 kPa,
v1 = 0.3, 2 € [0;0.05]. Within the physiological pressure range when the wall volume
remains constant, v = 0.038 [16,25].

As the intima is a very thin layer, the inner layer as a composition of the intima
and media is often investigated in experiments and compared to the outer layer or
adventitia. In superficial arteries transcutaneous ultrasonography gives the values
of total arterial wall and media thickness that correspond to histological data [12].
The method is less accurate for estimation the thickness of both the adventitia and
intima layers so reliable determination of thicknesses of the layers are available by

histological examination.

The inner and outer layers of the artery work at different mechanical conditions.
When the internal and external pressures and longitudinal stress are zero then the
inner layer is under compression and the outer layer is in tension, and the value
of compressive stress is greater than the tensile stress [26]. The pressure-diameter
relationships are different for normal vessel segment and for the same segment after

being turned inside out because of different initial strain distributions in the wall
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[27].

The Young’s modulus of the adventitia is lower then that of the media. For the
porcine thoracic aorta the Young’s modulus F; , of the inner and outer layers accor-
dingly are E; = 16.054—55.474 kPa, E, = 2.91—6.65 kPa with E;/E, = 5.53 — 16.33
[28]. The Young’s modulus of the intima-media and the adventitia layers of the pig
thoracic aorta are £ = 43.2 + 15.8 kPa, E = 4.7 £1.72 kPa in a linear range of the
stress-strain curve including both the zero-stress state and the no-load state.

The experimental results confirm the important role of mechanical properties
and geometry of the layers in the function, growth, stability and development of
pathology of the blood vessels. Basing on the presented data stability of the blood
flow in the vessel is considered in the next sections as a 3D flow of the viscous liquid
in the three-layered tube. In this study material of the tube is treated as viscoelastic
anisotropic. Active stress in the middle layer, initial stretching of the vessel and
residual stress in the wall [29] are not taken into consideration though they play a
significant role in the wall dynamics as it was shown in this section. Including the
active response and the pre-stretching of the vessels will be the subject of the future

investigations on the topic.

4 Governing equations

The flow in the blood vessels of alive bodies are approximated in this paper by a
flow in a long viscoelastic multilayerd non-isotropic thick-walled tube with the inner
radius R, thickness h and length L (R/L << 1) as it is sketched in figure 1. The

continuity and Navier-Stokes equations governing the fluid motion are :
V-7=0 (1)

O v - —Lvp s Lly.se @)
ot pf pf

where 9™ is the fluid velocity, p is the fluid mass density, p* is the hydrostatic pressure

and 6* is the viscous stress tensor in the fluid. When wall material is considered as

incompressible then the mass conservation and momentum equations can be written

as

V.-@9=0 (3)

52 . .
pfua—;; = —Vp 4+ V.54 (4)

where @7, p*J, p;i,j , 6 are the displacement, pressure, mass density and the stress
tensor for the j-th layer of the wall, j = 1,2,3. The boundary conditions include



Temporal and Spatial Instabilities of the Flow in the Blood Vessels 7

the continuity conditions for the fluid velocity and displacement of the inner layer
and normal and shear stresses at the inner wall; the continuity conditions at the
interfaces of the layers; the no displacement conditions at the tethered outer surface
of the vessel respectively :

a—'*l
M=R: 0=, il =al (5)
™ =R+h: @' =a? & =572 (6)
*=R+hi+hy: @?=a0, 532 =5612 (7)
=R+h: @=0 (8)

where n denotes the component of the stress tensor which is orthogonal to the cor-
responding interface.

For the viscoelastic layers with parallel connection of the elastic and viscous
elements [30] the constitutive equations are

0
= _
g} = Azkek + pd atéq (9)
where
—xjT * * * * * *
G = (Opuyn s Ty Onny Oyny Oy Tpng)
3 = (Epxpx 9 Qs Epx gx s EQux s Epx 3 Epxg

and the quantities (€]« ., €pg, Exx s Efyu s Epn x> Epng) are the components of the strain

tensor )
£ = §(Vﬁ*j + variT) (10)

and (O, Opg, Ops yxs O pns Ops n, Orng) are the components of the stress tensor 6*5 in
cylindrical co-ordinates (r*,0, z*), AJ,c is the matrix of elasticity coefficients, uw are
the viscosities of the layers.

When the material is considered as transversely isotropic and the plane of isotropy
is perpendicular to the r-axis [16] then

e .1
E} E} E 0 0 0 \
B
B o5 75 ° 00

- v

W™= % m =m ° 0 0

1

0 0 0 3k (1) 0
0 0 0 0 55 0
0 0 0 0 0 i

N
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For an isotropic material when E{ = E% = FEJ, 1/{ = v) = 19, the problem (1)—(8) can
be considered for a two-layered tube (the inner and outer layers) taking into consi-
derations the data for E; and E, [28]. For an isotropic viscoelastic material stability
of the system has been investigated for axisymmetric [3] and non-axisymmetric [4-5]
small perturbations. To present day possible investigation of the three-layered ani-
sotropic blood vessels has been restricted by absence of the precise data on viscous

and elastic parameters of the layers.

5 First order system of differential equations control-

ling a normal mode

>From now and in what follows we shall use a dimensionless variables where the
distance will be scaled by the tube radius R, the velocity by V;.; = (G’Tef/pf)l/2
where Gy is a reference shear modulus which will be chosen to be of the same order
of magnitude of the shear modulus of one viscoelastic layer forming the tube. The
shear modulus of all the layers will be scaled by G;.s. The solid mass density will be
scaled by the fluid mass density p; and pt = pi,/p; are the solid/fluid density ratios.
The time scale is (prQ/GTef)l/Q. The Young’s modulus will be scaled by Gy, to
say, 21/ = B! /Gyef, o’ = E}/Gyes, the pressure will be scaled by Gyes. The solid
viscosity, 1, well be scaled by the fluid viscosity py and uf; = /va{;, /uy stands for
the relative solid/fluid viscosity. Let V;. be the maximum value of the velocity of the
basic steady flow. We introduce T' = (p;V;2/Gyef)'/? = V,/Vyep which is the ratio
of the inertial fluid forces to the elastic solid forces or the ratio of the basic flow
speed to the characteristic solid wave speed. The wall of the tube consisted of three
layers with dimensionless thicknesses H; = h;/R, j = 1 —3 with different mechanical
properties, see figure 1. The relative thickness of the wall is H = h/R.

We suppose that before the system is being disturbed, the three-layered viscoe-
lastic tube is in a dynamic equilibrium with the conveyed steady flow. The steady
velocity field in the fluid has a unique component parallel to the axis of the tube,

namely :
Tp = V;é'z = V}Vfé’z = VTef].—‘Vfé'z (11)

Furthermore, we suppose that the steady axial velocity component Vy = Vy(r) de-
pends only on the radial distance. Let ¥, p be a dimensionless velocity and pressure
disturbances which we add to the basic velocity and pressure fields ¥, pp in such a
way, the instantaneous fields are 7 = ¥ + V,.;¥ and p* = py +p Gres. Then, neglec-
ting the nonlinear terms in (1)-(2) leads to the following system of partial differential

linear equations controlling the evolution of any infinitesimal disturbance which read
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Tethered surface
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V.7=0 (12)
ov ov avy _ r N
E—FVf&ﬁ-er@z =-Vp+ Ev g (13)

where Re = psV,R/uy is the Reynolds number, & is dimensionless viscous stress
tensor in the fluid. The dynamic equations in the solid (4) are not modified as far
as we consider the small disturbances. However, the boundary conditions (5) at the
fluid/solid interface have to be reconsidered, indeed, the continuity of the velocity
field at the interface can be written in the form :

r=14ul: Vi(r)ég, +7= " (14)

where u, = u}/R is the radial dimensionless displacement of the material point
located at the interface. A Taylor expansion of V;(1 4 u,) in the vicinity of the
dynamic equilibrium position located at 7 = 1 and the fact that V(1) = 0 allows
the boundary condition (14) to be considered in the form

€ +U=— (15)

Since the coefficients of the partial differential equations are independent of the
azimuthal and axial coordinates the solution of the problem (1)-(9) in the non-

dimensionalized form can be sought in the form of a normal mode :
(’Uj,pf) — (ﬁj,ﬁf)65t+ikz+in0 + cc (16)

(ujaps) = (ﬂjaﬁs)eSt—i—ikz—i—ine +cc (17)
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where vj, uj, ps, ps are the velocity, displacement and pressure disturbances, cc
denote complex conjugate. By substituting (16)-(17) into (4), (12) and (13) one can
obtain a system of differential equations for the disturbances in the fluid :

do, d’l)g ~ dv, -
_— = M M _— = ]_
A= O in2l _ ikv, (19)
r r
dp T . do 0. ol
d—: = _’lka'UT — s, + d;"' - + 0'7-0 + 'lkO'T-z - % (20)
Bo = _inp4 g Y4 1é) 4 Rer—1[+z'm7f@9 + stig + 2y

in ~ 7~ Gr0+08
—- 069 — ’Lkaez — %]

4 — _ikA + Rel ! [+ikVyo, + o L + 50, + ikpy — = — 255 — ikd,,]

Orr Orp Orz T 2A o + % - UTG &2 + ikdy
Gor oo Gox | = Ro | S0t Mo — 20 (e 4 %) MU= 4 ki
Gor Gp9 Gao £, + ik, % 1 ik 2ik7,

and in the solid media :

R

du,

dii, -
=11 ; : = 21
dr Lo e =% dr z (21)
dp - di—' ng
d: = pr82’u,,~ dr 7"(9 + 'LkTrz - —
dD D . . D
2T+ =+ —Drg +ikDy — oo (22)
T T T
L — _inp, 4 e 9 4 10+ (0 + Re T'su,) o, st + 2,
— iy — ikTy, — TeotTor —in gy — ik Dy, — Dratlax]
% = —ikY1 4 (© + Re 'Tsp,) " [prs%i, + ikps — & _ in Io — ikT,,
_% - %f)z0 - Zk'Dzz]
D,y Dy Dy, 273 Co+r~"(inily — ig) . + kil
Dy, Dgg Dy, | =r| {p+ 2iz—te indgttr in% + ikig
D,, D,y D, ¢, + ik, inr i, + ikiig 2ikil,

k = Re 'Tsp,
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( Ty (= = = 00 0\ (T
r~! (indg + ) =2 = Z 0 0 0 Tyo
ik, 22 < 0000 Ty,

Co+r Ying,—dg) | | O 0 0 © 0 0 Too
inr Y, + ik 0 0 0 0 ©e 0 Ty,
&, + ik, o 0o 0 00 ©/)\T.

The relation between the derivatives of the diagonal stress tensor components and

the components of the displacement vector and their first order derivatives d/dr are

T, =2 _in2 _ira,
r r
TQ B ’_L :V2 —_U2 df#
r ¥ (—intg — i)+ inG+ 1) | _ | S22 3 o
ZkCZ —532 —:1}1 E d%z
=2 = =1 Tdr
where - 1 . -
1 iny .4 oz
Ty =+ — L1 — —Cp+in—o — ik, (23)
T T T T
The boundary conditions for the disturbances are
. dv
t r=0: =0 ; —=0 24
at r o TS (24)
dv,
at r=1: 5 =sil i G+ é’ (T)ai = siil (25)
r
_ﬁ; + Trlr + D}r = _ﬁf + Orr (26)
Trlcc + Diw = 0rz (27)

at the interfaces between the j-th and j+1-th layers, j=1,2 :

@ =att ;A= (28)

5+ T + Dl = =9 + T + DI (29)
TY, + Di, = T4 + DI (30)

at r=1+H: @ =0 ; @w=0 (31)

The first-order differential equations for axisymmetric disturbances can easily be
obtained by substituting n» = 0 into (18)—(31).
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6 Numerical method

By substituting n = 0, 99 = 0, 49 = 0 into (18)—(31) we obtain the system
of first-order differential equations that can be solved using a fourth-order Runge-
Kutta method. Therefore two independent solutions (X7,X9) where each one satisfies
the boundary conditions at r = 0 have been obtained in the fluid medium. The
components of the vectors X;, i = 1,2 are the velocity components and their first
order derivatives d/dr and the pressure in the fluid. The independence of the two
solutions, X, is ensured by starting the computation with one of the two independent
vectors formed by several values of the vector (9,,pf) at r = 0. For instance X; can

be obtained by starting the computation with the boundary condition
Xy = (3, 9,7, 6 &) = (1,0,0,0,007 5 at r=0

and X can be obtained by starting the computation with the boundary condition
Xy = (g, O, Pt &r &)’ = (0,0,1,0,0)T ; at 7=0

by this choice the boundary conditions at » = 0 are taken into consideration by both
solution, namely X; and Xjy. Note that the chosen values at r = 0 must form a set
of independent vectors which is sufficient for X; and X5 to be independent vectors.
Then the general solution in the fluid medium is a linear combination of the two

independent solutions X1 and Xs, such that
Z, = A1 X + AX5 (32)

where (A;,A3) are arbitrary constants.

Similarly, for the displacement field in the solid, we solve the system for two
independent solutions (Y1,Y2) where each one satisfies the boundary conditions at
r = H. The components of the vectors Yi,Yy are the components of the displa-
cement vector and their first order derivatives d/dr and the pressure in the solid
medium. The independence of the solutions is ensured by starting the computation
with one of the two independent values of the vector (éc,ﬁs) at r =1+ H. For ins-

tance Y1 can be obtained by starting the computation with the boundary condition
Y1 = (g, i, Psy Gry C2)T = (0,0,0,0,1)7 : r=1+H

and Y9 can be obtained by starting the computation with the boundary condition
Yo = (g, @r, P56 Ga) T = (0,0,1,0,007 5 r=1+H

by this choice the boundary conditions at 7 = 1+ H are considered by both solutions.
The chosen values form a set of inependent vectors which ensures the independence
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of Yy and Y. At the interface solid/solid, the boundary conditions are enforced
numerically. The general solution in the solid medium is a linear combination of Yy
and Yo, such that

Zy = B1Y | + ByYo (33)

where (B1,B2) are arbitrary constants. The boundary conditions at » = 1 leads to
the eigenvalue problem
MC=0 (34)

where CT = (A1, Ay, By, By) and the elements of the 4 x 4 matrix M are the linear
combinations of the particular solutions (X1,Xz2), (Y1,Y2) and their derivatives d/dr
at 7 = 1. The components of the matrix M include all the parameters of the sys-
tem directly or via the solutions (X1,X2), (Y1,Y2). The characteristic equation is
obtained by setting det(M) = 0.

7 Eigenvalue Search Technique

In order to solve the equation det(M) = 0 we sweep the complex (s;, s,)-plane
when the temporal eigenvalues are being sought and accordingly the complex (k;, k. )-
plane when the spatial eigenvalues are being sought. Here s, is the amplification rate,
s; is the frequency, k; is the spatial amplification rate, k, is the wave number. For
this task the complex plane has been divided into a set of large number of small
cells. The edges of the cells are used as initial conditions for the best-decent method
to converge toward the eigenvalues. The method leads to a large number of repeated
modes because the code may converge toward the same eigenvalue for several initial
conditions. Thus during the numerical procedure one has to ignore the repeated
eigenvalues.

8 Results and discussions

Since the stability of the flow in non-isotropic viscoelastic multi-layered tube
as a model of the blood flow in the vessels is considered, the independent material
parameters in (18)—(31) have been chosen within the physiological range that is
discussed in the sections 2-3. Thus, the temporal and spatial eigenvalues of the system
depend on 24 dimensionless geometrical and material parameters namely Hj, prZ,
,u;, 531'72, GY, Vf,Q, j = 1,2,3. Two dimensionless dynamical parameters Re and T’
represent the ratio of the inertia fluid forces to the fluid viscous forces and to the
solid elastic forces accordingly.

An extensive and primitive examination of all possible combinations of these

parameters in the model leads to a too large number of figures to be included in

13
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one paper. Therefore, we will focus our attention on the most important of them in
order to see the effect of the non-isotropic part of the constitutive equations. First
of all we examine the effect of exchanging Young’s modulus E{ and 2. In figure 2a
the temporal eigenvalues in the complex (s;, s;)-plane for two values of dimensionless
Young’s modulus ] = 2G , ) = 20G and :{ = 20G , E) = 2G are presented. The
other parameters are kept constant. Surprisingly the difference between these two
results is negligibly small indicating that the constitutive equation is quasi symmetric
with respect to Ejl and E% at least for the case which has been considered here. Note
that in this case there are two unstable modes at low frequencies as it has been shown
in figure 2.

In figure 2b the amplification rate of the most unstable mode versus the Pois-
son coefficients v4 and 14 is plotted. We can conclude that the amplification rate
changes slightly when the Poisson coefficients z/g and V{ vary, indicating that the
extra diagonal components in the linear elasticity matrix are not very important in
the generation of axisymmetric instabilities. Note that in figure 2b the variation of
the coefficients 1/2 or v] has been undertaken simultaneously and kept the same in
each layer. The effect of the variation of the Poisson coefficient only in one layer has
been also examined. The result indicates that alternation of the amplification rate
due to the variation of the Poisson coefficients may be ignored. In all the numerical
experiments which have been performed here it has been found that the variation
of one of the parameters (1/%, 1/1) or vJ and V1 together in any layer has a little effect

onto the amplification rate provided that

otherwise the determinant of the linear elasticity matrix is zero and the matrix
becomes singular.

The comparative results on the amplification rate of the most unstable mode
of isotropic viscoelastic tube and non-isotropic one are presented in figure 3 . The
temporal eigenvalues of the isotropic tube form five branches in the (s;, s,)-plane.
Two branches are localized near the positive imaginary axis (s;-axis), two others are
localized near the negative imaginary axis (s;-axis) and one branch is localized near
the real axis (s,-axis). The topology of the spectra can easily be understood if one
consider the limit case. In fact, if the interface surface between the fluid and the solid
is maintained at rest in such a way that there is no interaction between the fluid and
the solid. In this virtual state the no-displacement condition for the solid and the
no-slip condition for the fluid can be hold at the interface. Furthermore, if we suppose
that Re << 1, one can replace the Navier-Stokes equations by the Stokes equations.

Therefore, in this virtual state one can easily show that the temporal eigenvalues
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of the solid layers alone are pure positive or negative imaginary numbers (with zero
amplification rate and large frequency range) and the fluid temporal eigenvalues are

pure negative real numbers (with zero-frequency and high dampening rate).

When the interaction between the solid and the fluid is allowed, then the solid
(fluid) eigenvalues are removed slightly from the imaginary (real) axis. The displa-
cement of the eigenvalues in the (s;, s,)-plane, which is a consequence of the fluid-
structure interaction, is more effective in the region of the (s;, s,)-plane where the
frequency and the amplification rate of the solid based modes match the frequency
and the amplification rate of the fluid based modes. In fact the interaction is more
effective near the origin of the plane (s;, s,)-plane which corresponds to the modes

of low frequency and low amplification rate.

When the Young’s modulus in the radial direction decreases, the amplification
rate and dampening rate of the eigenvalues reduce, figure 3 . Furthermore there is
another unstable mode with a very small amplification rate. This mode has not been
observed in the isotropic case with the same parameters. Note that, as it is shown in
figure 2 , diminishing the radial Young’s modulus or axial Young’s modulus produces

approximately the same effect.

The spatial eigenvalues for the isotropic tube and the non-isotropic one are plot-
ted in figure 3b . It is found that the spatial eigenvalues of isotropic tube, indicated
by sign + in the figure, form four branches in (k;, k;)-plane. The modes with positive
(negative) values k; represent a disturbance localized downstream (upstream) of the
source of the disturbance. The spatial eigenvalues for the considered frequency s; = 2
are divided into two groups with low and high wave numbers (relatively long and
short waves accordingly). The most striking result for the non-isotropic stress-strain
relationship is presented in figure 3b by the shift of the modes toward the long-wave
region in (k,, k;)-plane (low wave number). Of course, in practical circumstance, the
tube is of finite length and tethered at its farthest sections that prohibits the exis-
tence of all the waves which length is bigger than the length of the tube. In that way
all the modes with k, =~ 0 can not exist in the blood vessels. Note that the fact that
k; is negative or positive does not indicate stability or instability of the system. In
fact, the sign of k; is relevant in the stability of the system only if k£ cross the real
axis in (ky, k;)-plane when the amplification rate of the most unstable mode tends to
zero. In this circumstance, the value of k;, when for the most unstable mode s, — 0,

corresponds to spatial amplification rate.

The effect of the simultaneous deviations of different material parameters of all
the layers from the isotropic state is illustrated by figures 2-3. Here the relations
between the parameters of the layers were kept constant. Now we present the results
which have been obtained by variation of the parameters of one layer when the

parameters of the other layers were kept constant. We will, particularly, focus our
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attention on the group velocity in view of the importance of the speed of the wave

propagating in the blood vessels.

The amplification rate of the most unstable mode versus the viscosity of each
of the layers is plotted in 4a. Here two cases have been considered when E% =267,
E{ = 20GY and E{ = 2G7, Eé = 20GY accordingly. In each case the viscosity of two
layers are kept constant while the viscosity of the remained one varies. The results
presented in figure 4 confirm that exchanging E% and Ejl in the constitutive equation
leads approximately to the same results as it was already obtained in the previous

case (see figure 2).

Furthermore, increasing the viscosity of the first layer, which is in contact with
the fluid, leads to an increase of the amplification rate of the most unstable mode
(figure 4a). Thus, increasing the viscosity of the first layer destabilizes the system.
The effect can probably be explained by better fluid-solid coupling when the viscosity
of the inner layer is high enough. The viscosity of the second layer show a stabilizing
effect (figure 4a) whereas the system is quite indifferent to variation of the viscosity
of the third layer. There is no clear explanation of the surprising effect concerning

the stabilizing effect of viscosity of the middle layer.

Owing to the fact that the viscosities of the first and second layers have an
opposed effect one cannot use the classification suggested by Benjamin (1963) [32] in
order to classify this mode in one of the class noted A, B and C. In fact, according to
Benjamin’s classification, if one considers the total disturbance energy of the coupled
fluid-solid system, a decrease in that energy leads to destabilization of the modes
of the class A and to stabilization of the modes of the class B and has no effect
on the modes of the class C. The effect of the viscosity of the first (second, third)
layers suggests that the class A (B,C) is an appropriate one for the corresponding
case. Consequently this unstable mode could not belong to any of these classes. Note
that the most unstable mode is near the real axis which suggests that the mode is
a fluid-based mode and the second unstable mode with small amplification rate is
near the imaginary axis which suggests that this is a solid-based mode as it has been

shown in [5] using the classification introduced by [33,34].

The group velocity of the most unstable mode versus the viscosity of the layers
is presented in figure 4b. Note that when p? = 0 the group velocity is negative.
Therefore, it is all about an upstream propagated wave. An increase in the viscosity
of the first layer, which is in contact with the fluid, leads to an increase in the
group velocity. In that way the faster modes have higher viscosities. The variation of
the viscosity of the third layer leads to a relatively non-significant alteration in the
speed of propagation of the unstable mode. Surprising, any change in the viscosity
of the middle layer leads to an inversion of the direction of the propagation of the

unstable mode, where the group velocity becomes positive. For some value of u2 the
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group velocity is zero which suggests the existence of absolute instability in the non-
isotropic three-layered tube. The existence of such absolute instability in isotropic
viscoelastic tubes has been shown in [4].

Influence of the shear modulus and Young’s modulus on the most unstable mode
is illustrated in figure 5. In each courve the relations E% = 2G7, E{ = 20G7 are
hold during the computation process. As it is shown in figure 5 the most unstable
mode remains unstable for all the considered range of shear modulus. Increasing
the shear module of any layer does not stabilize the system. However, the increase
in the both shear and Young’s modulus has a non-uniform effect on the temporal
amplification rate. The variation of the shear modulus of the middle layer G? and
Young’s modulus Z3 and =2 when 23 = 2G!, 2 = 20G? cause an opposite effect in
comparison with the variation of the shear modulus of the first layer G* subjected to
the same conditions. Note that the higher values of the amplification rate have been
obtained by the variation of the shear modulus G2 of the second layer in comparison
with the values obtained by variation of the shear modulus G' of the first layer
(figure 5a). The increase in the shear modulus G® of the third layer, subjected to
the conditions =3 = 2G3, 3 = 20G® leads to a relatively small increase in the

amplification rate of the most unstable mode

The group velocity of the most unstable mode versus the shear modulus of one
layer while the shear modulus of the two other layers are kept constant is plotted
in figure 5b. In the same way the Young's modulus is related here to the shear
modulus according the conditions Eé =2GY, Ejl =20G7, i = 1,2,3. It was obtained
that the group velocity depends in a nonlinear way on the shear modulus. When
G' = G? = G® = 0.1 the group velocity is negative, so the wave which is formed
by the most unstable mode propagates against the flow (the upstream propagated
wave). When the shear modulus of the first layer G increases while G? = G3 = 0.1,
the group velocity of the most unstable mode changes its sign for some values of G*
and forms a downstream propagated wave. For some values of G' the wave has a zero
group velocity suggesting again the existence of an absolute instability of the system.
The variation of the shear modulus of the middle layer G2, when G' = G® = 0.1,
produces significant variation of the group velocity though the latter remains negative
and the wave which is formed by this mode remains an upstream propagated one.
The variation of the shear modulus G? of the third layer when G!' = G? = 0.1,
produces a relatively small variation of the group velocity.

The speed of the waves that are propagated in the arteries is a measurable quan-
tity, so the obtained results may be used in order to give insight on the state of the
blood vessel and the circulatory system. One has to invert the relation between the
group velocity and the shear modulus. In such a way when the speed of the wave is

estimated from the measurements one can evaluate the shear modulus of the artery.
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F1G. 2 — (a) : Temporal eigenvalues of three layered viscoelastic tube in the
(s;, 8;)-plane. s, and s; being the amplification rate and the frequency, G* =
0.1, v = 0, +: =) = 2G" =} = 20G", x : E) = 20G%, =} = 2G". (b) :
The amplification rate of the most unstable mode versus Poisson coefficients.
B = 20G" =, =} = 2G". Solid line vy = v3 = v3 = 0.1, v{ = v? = v} and

dashed line vj = v} = v =01, vy = Vi = V3

9 Conclusion

In this paper stability of the compliant biological ducts, like arteries and veins,
conveying a viscous fluid has been analyzed. The vessel wall has been modeled as a
compliant tube composed of three concentric viscoelastic non-isotropic layers with
different material parameters and relative thicknesses. The anisotropy of the layers is
connected with differences of the Young’s modulus in the radial and axial directions.

The equilibrium state considered here is the steady Poiseuille flow of the viscous
incompressible fluid through the hollow cylinder with a constant thickness and inner
radius. The length of the cylinder L and its inner radius R << L so it can be
considered as an infinitely long tube.

Stability of the system to axisymmetric infinitesimal disturbances has been in-
vestigated within the framework of the linear stability analysis. Both temporal and
spatial stability analysis have been done and the temporal and spatial eigenvalues
of the system have been found. It is shown that anisotropy of the viscoelastic wall
has a great effect on stability of the system. For the isotropic tube, it has been
found that the temporal eigenvalues form five branches in the (s, s;)-plane where
sy is the amplification rate and s; is the frequency. Two branches are localized near

the positive imaginary axis of the (s, s;)-plane and two others are localized near the
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F1G. 3 — Comparison between isotropic and non-isotropic eigenvalues. + : iso-
tropic layers G* = 1, =8 = 2G*. ® : non-isotropic layers, G* = 0.1,
vi=vh = 0.1, 25 = 2G", ¢ = 20G". (a) : Temporal eigenvalues of three
layered viscoelastic tube in the si)-plane, (b) : Spatial eigenvalues of three

(5r,
layered viscoelastic tube in the (k,, k;)-plane
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F1G. 4 — (a) : Temporal amplification rate of the most unstable mode versus
the viscosity of the three non-isotropic layers. The parameters of the system
are i = vt = 0.1. Solid line p? = p2 = 0. Dashed line ! = p2 = 0. Dotted
line ! = p2 = 0. +: B = 2G*, 21 = 20G%, x : E! = 2G* E; = 20G".
(b) : Group velocity of the most unstable mode versus the viscosity of the
three non-isotropic layers. v4 = v = 0.1, 2}, = 2G*, ! = 20G". Solid line
p2 = p2 = 0. Dashed line p! = p2 = 0. Dotted line pl = p2 = 0.
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F1G. 5 — (a) : The amplification rate of the most unstable mode versus the
shear modulus of the three non-isotropic layers. =5 = 2G*, Z¢ = 20G". Solid
line G? = G* = 0.1. Dashed line G' = G® = 0.1. Dotted line G* = G? = 0.1.
(b) : Group velocity of the most unstable mode versus the shear modulus of
the three non-isotropic layers. =5 = 2G*, =} = 20G". Solid line G* = G* = 0.1.
Dashed line G' = G® = 0.1. Dotted line G' = G? = 0.1.

negative imaginary axis and the last one is localized near the real axis. Displacement
of the eigenvalues in the (s, s;)-plane can be easily understood by analysis of the
eigenvalues of the uncoupled system of equations for the fluid and the solid media.
In fact at very low Reynolds numbers, the inertia forces in the fluid are small in
comparison with the viscous forces, consequently, the fluid obeys the Stokes equa-
tion. Owing the fact that Stokes equation is linear, the disturbance obeys the same
Stokes equation. If the disturbance is supposed to be in normal form and the no-slip
condition is applied at the interface, then the amplification rate and the frequency,

namely s, have to satisfy the following equation

_i < avi B’UZ'
Re a.’L‘j’ a.'I,‘j

s = >/ < wi,v; >

where v; are the velocity components and the symbol <,> stands for dot product.
In this limit case s is real and negative. As expected, at low Reynolds number the
modes in the fluid could only be dampened when the no-slip conditions are applied
at the solid/fluid interface. Therefore, the modes which are localized near the real
axis, when the interaction between the fluid and the solid is allowed, are coming from
the fluid into the solid medium. In the same way, if the no-displacement conditions
are applied at the solid /fluid interface the eigenvalues of the solid system uncoupled

from the fluid have to satisfy the relation
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where u; are the displacement components. In this limit case, the eigenvalues of the

?=-G< > /< ug,up >

solid system are a set of pure positive and negative imaginary numbers. Therefore,
the eigenvalues which are localized near the imaginary axis, when the interaction
between the fluid and the solid is allowed, are coming from the solid media. When the
interaction is allowed between the solid and the fluid at low Reynolds numbers, the
eigenvalues are removed slightly from their respective axis to form five branches. As
at zero Reynolds numbers the frequency of the fluid modes is zero, by continuity, one
expects that at low Reynolds numbers the fluid modes have low frequencies. These
fluid low frequency modes are expected to interact more efficiently with the solid
modes which have frequencies of the same order of magnitude. The result explains
the fact that when the solid/fluid interaction is allowed, the solid modes with low
frequencies are moved away from the imaginary axis as it is shown in figure 3. Even
though the most important part of the modes are moved by solid/fluid interaction
toward the region where s, < 0 producing the stable modes, few of them (in our
case two modes) are moved by solid/fluid interaction toward the region where s, > 0
producing two unstable modes.

It has been found that the spatial eigenvalues form four branches in the half-
plane (0 < k,, k;). The similar four branches exist in the half-plane (0 > k,, k;). Two
of the branches represent relatively short waves and two other branches represent
relatively long waves. The fact that k; may be a positive or negative number does
not indicate the instability of the system. Rather it indicates the position of the
disturbance relative to the source which it has been produced by. In order to find
out the values of k; which are relevant in the spatial instability analysis, one has to
lower the Laplace contour of the unstable mode in order to collect the modes which
cross the real axis. Thus, these modes represent a spatial instability and the values
reached by k;, when the amplification rate reaches zero, may be interpreted as spatial
amplification rates.

It was obtained that an increase in Young’s modulus in all the layers with the
same rates in the radial or axial directions produces approximately the same effect on
the spatial and temporal eigenvalues. Furthermore, the extra diagonal components
of linear elasticity tensor have minor effect on the amplification rate of the most
unstable mode. We speculate that these extra diagonal components may be more
important in the behavior of the asymmetric modes. The stability analysis of these
asymmetric modes will be presented soon.

It was found that any increase in the viscosity ! of the inner layer while the
viscosities of the two other layers are kept constant u2 = u = 0, leads to an increase

in the amplification rate of the most unstable mode. This result has been explained
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by the fact that an increase in the viscosity of the first layer enhance the fluid/solid
interaction. Furthermore, it has been found that the viscosity of the middle layer
has a stabilizing effect while an increase of the viscosity of the outer layer induces

negligible variation of the amplification rate of the most unstable mode (figure 4a).

The difference between the amplification rates of the most unstable mode in the

j ':j_ =] _

two cases, where in the first case ] = 2GY, By = 20GY and in the second case By =
2G7, E{ = 20GY, remains very small for all the viscosity values taken into account. It
has been found that the group velocity of the most unstable mode remains negative
when the viscosity varies as far as the system is being kept unstable producing
an upstream propagated wave. The stability of the system, when p? increases, is
accompanied by a brutal increase in the wave speed as well as by the variation in its
direction (figure 4b).

The dependence of the amplification rate of the most unstable mode on the shear
modulus of each layer has been examined. It has been found that an increase in the
shear modulus subjected to the relations E% =2G7 and E{ = 20GY, keeps the system
unstable. However, the effect of the shear modulus of each layer on the amplification
rate has been found to be different. Thus the shear modulus G' and G? have quasi
opposite while G® has a relatively small influence on the system (figure 5a). The
variation of shear modulus G' of the inner solid layer which is in contact with the
fluid has been found to exert a great imfluence on the group velocity of the most
unstable mode. For the high values G' the wave change its direction and becomes a

downstream propagated wave.

For some values G' the group velocity is zero, which suggests the existence of
an absolute instability of the system. The shear modulus of the middle layer G2 has
a noticeable influence on the amplitude of the group velocity of the most unstable

mode without changing its direction.

The obtained results confirm that multi-layered structure and mechanical pro-
perties of the layers significantly influence flow stability in the compliant tubes.
Variations of the elastic and viscous parameters of one of the layer or a few layers
simultaneously exert a great influence on the stable and unstable modes. In that way
possible stabilizing (destabilizing) effect of the adaptive variations of the parameters
of different layers of the blood vessels can be analyzed. The presented results can
shed a new light on the mechanics of the arterial wall and its role in stability (in-
stability) of the blood flow in normal and pathological cases. The set of the material
parameters which stabilize the liquid flow in the compliant tube can be used in the
technical applications for development of the novel stable multi-layered coating and
conduits.
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