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The analytical model of the 2D tokamak magnetic field for the test particle simulations is proposed. It is shown how to vary the

model parameters to obtain the plasma shape with the different ellipticity and triangularity. The problems of the particle direct losses 

in tokamak are discussed. The loss cones of the particles are calculated for the different initial radial locations. The minimum trapped 

particle energy required to escape from the plasma due to the first orbit losses is found numerically for the different ion species.
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The test particle simulations play an important role in the understanding of the processes of particle transport in 

the present-day fusion devices such as tokamaks and stellarators. This method allows not only to verify the properties of 

the particle motion in the given magnetic field configuration [1] but also to estimate the radial dependence of the 

transport coefficients [2,3] as well as to calculate the heat loads on the different plasma-facing components [4]. 

Another important application of this technique is the study of different mechanisms of particle losses. In this 

paper we perform the numerical calculation of the particle orbits and direct losses of the hydrogen ions in a tokamak 

geometry. It is an important problem with respect to the fact of energetic tail production under the ICRF plasma heating 

in minority heating regime [5] which could decrease the plasma confinement. The purpose of the work is the study of 

the particle energies required to escape from the plasma for the different radial particle locations. 

TOKAMAK MAGNETIC FIELD MODEL 

In present-day tokamaks and stellarators the plasma is confined using the strong toroidal magnetic field. In order 

to compensate the radial drift and provide the confinement of particles the magnetic field should be made twisted. In 

stellarators the confining magnetic field is fully produced by the 3D external magnetic coils. In tokamaks the set of 

planar toroidal field (TF) coils is used to create the toroidal magnetic field. The rotational transform is produced due to 

the induced current flowing in the plasma. 

In contrast to the inherent 3D structure of the magnetic field in stellarators the tokamak geometry usually has the 

symmetry over the toroidal direction. Neglecting the effects with the toroidal ripple of the magnetic field due to the 

finite number of TF coils (for example, the number of TF coils for tokamak JET is 32 but could be switched to 16 to 

study the enhanced ripple losses [6]) the tokamak magnetic field can be considered as a 2D structure. 
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We use the orthogonal curvilinear quasitoroidal coordinate system , where  is the radial distance from the 

plasma center,  and  are the poloidal and toroidal angles, respectively (Fig. 1). This coordinates are linked to the 

cylindrical  via the relations: , , , where  is the major plasma radius. 

The Lame coefficients for the coordinate system considered are the following: , , . We also 

introduce the quantity  which will be useful for further calculations. 

The stationary equilibrium magnetic field  should satisfy the equations: 

, (1)

. (2)

In the low  case only the toroidal component of the plasma current is non-zero. Assuming the symmetry over the 

toroidal direction and using the explicit expression for 

(3)

the standard radial dependence of the toroidal component of the magnetic field is obtained 

(4)

where  is the magnetic field at the plasma axis. 

Now we examine the expression for the divergence of the magnetic field 

. (5)

Under the assumptions made it is simplified to the condition 

. (6)

We now introduce two scalar functions  and  in the following way: 

,

.
(7)

Then the equation (6) transforms to the condition: 

. (8)

The magnetic field  is expressed in terms of the scalar functions as follows: 

. (9)

FACTORIZATION OF THE SOLUTION 

Among all the functions  and  which satisfy the equation (8) we will consider only the solutions that could 

be written in the factorized form: 

,

.
(10)

Using the separation of the variables one readily obtains 

, (11)

where , . Due to the finiteness of the solution at  we have the additional condition 

. Then the magnetic field model (9) transforms to the expression 

. (12)

It should be emphasized that specifying any functions , ,  and constant  the magnetic field model in 

the form (12) automatically satisfies the equations (1) and (2). 

CIRCULAR MAGNETIC SURFACES CASE 

If we set  the magnetic field will have zero radial component . From the equation of the magnetic 

field lines 

(13)

it is immediately obtained that the magnetic surfaces will have the circular form, .
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We will now connect the function  with the rotational transform profile  From (13) we obtain the 

equation which characterizes the twisting of the magnetic field line 

. (14)

Let us denote . Then the magnetic field is written in such a simple form: 

. (15)

The function  is often called to be the rotational transform when using the magnetic field in a form (15). We will 

show below that in a general case it is not true, and  is the rotational transform profile only in the limit of the large 

aspect ratio. 

The solution of equation (14) with the initial conditions ,  can be written in the following form: 

. (16)

The principle branch of the solution valid for  can be found analytically 

. (17)

For  we have . Adopting the definition of the rotational transform we obtain 

(18)

Here  is the exact rotational transform profile which is confirmed by the numerical integration of the field line 

equations. Finally, the more accurate expression for the magnetic field model with the circular magnetic surfaces and 

 as the rotational transform profile has the form 

. (19)

To feel the difference between two models (15) and (19), let us to use the typical parameters of the JET tokamak: 

, , . The radial difference between the surfaces where 

and  is about 3 cm which could become important when the magnetic islands are presented in the plasma. 

Fig. 1. The quasitoroidal coordinate system Fig. 2. Poincare plot of the D-shaped plasma surfaces

D-SHAPED MAGNETIC SURFACES 

Previously the strong plasma-wall interaction was prevented by using the limiters. In the such tokamaks the 

magnetic surfaces have almost circular form. But now with the development of divertor concept only a few tokamaks 

use the limiters. Most of present-day tokamaks operate with the non-circular plasma shapes. In this section we will 

show how to define the model parameters to obtain the magnetic surfaces with a different ellipticity and triangularity. 

The numerical integration of the magnetic field line equations 

,

(20)

is performed by the sixth order Runge-Kutta scheme (RK6). The initial point of each line is chosen . The 

initial radial grid is uniform, , . Each magnetic field line is followed for 2000 toroidal 

revolutions. The Poincare plot (the collection of intersection points of the magnetic field line with the chosen poloidal 
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plane after each toroidal turn) for the surface is produced. Except the rational magnetic surfaces where  is the ratio 

of two integer numbers, the magnetic field line in tokamaks is not the closed curve but fills up ergodically some surface 

which is called as the magnetic surface. 

The elliptic surfaces are obtained if we choose . For example, defining , , the 

ellipticity of the magnetic surfaces is equal to  near the axis and  at the plasma edge. 

The more general form of plasma surfaces is the D-shaped configuratuion with the non-zero triangularity . Such 

surfaces can be obtained by adding the term proportional to  to . For example, if we choose

 the magnetic surfaces will have the shape shown in Fig. 2. In the considered case the 

ellipticity varies from  at the center to  at the edge. The triangularity increases from zero at the center 

to  at the plasma edge. The radial dependence of  and  could be controlled by the appropriate choice 

of the function .

SIMULATION RESULTS 

There are two groups of particles with the different type of orbits in a tokamak. Depending on the initial particle 

pitch-angle  and the spatial location it could be either passing or trapped. The passing particles with the 

substantial parallel velocity rotate around the torus and form the drift surface. This surface is close to the magnetic 

surface but is somewhat radially shifted inward or outward depending on the sign of . Also the drift rotational 

transform which characterizes the twisting of the particle orbit differs from that of the magnetic field line. The trapped 

particles have low parallel velocity, at some point they are reflected from the high magnetic field side of tokamak. 

These particles do not complete the full turn around the torus, the poloidal projection of their orbits resembles the 

bananas. The banana trajectories of the hydrogen ions with the energy  are shown in Fig. 3. It should be 

noted that the trapped particles with  turn up radially inward while the particles with  have the outward 

radial motion. With the increase of the energy higher than some critical energy  the banana width will be enough 

large for the particles to be lost from the plasma volume. In contrast to ripple losses or heating induced losses this 

mechanism of particle losses is always presented in tokamaks. It is usually called as the direct or first-orbit losses 

mechanism.

The separation between the trapped and passing particles in the velocity space occurs for some value of the pitch-

angle . In the limit of zero banana width it is given by the expression [7] 

, (21)

where  is the inverse aspect ratio of the magnetic surface considered. The result (21) stands for the case of 

particle location at the equatorial plane . For finite particle energies the values of  are slightly modified and 

the separation cone in velocity space becomes asymmetric. 

Fig. 3. The banana trajectories of the trapped particles of the hydrogen with the energy :

a) Inward banana trajectory  b) Outward banana trajectory 

The loss cones for the hydrogen ions for two radial surfaces are shown in Fig. 4 and Fig. 5. The minimum energy 

 required for the trapped particle to escape from the plasma volume for different radial magnetic surfaces has been 

calculated for three ion species: hydrogen, deuterium and fully ionized carbon ions. The results are presented in 

Table 1. As expected, the critical energy strongly decreases with the approach of initial surface to the edge. This 

happens due to the radical dependence of the banana width on the particle energy [8] 

 , (22)
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where  is the Larmor radius and  is the initial radial coordinate of the particle. 

Fig. 4. Loss cone for  for hydrogen ions Fig. 5. Loss cone for  for hydrogen ions 

Among the considered species the deuterium has the lowest critical energy. It is twice smaller than the 

corresponding energy for the hydrogen. It means that with the increase of atomic mass number the energy 

decreases. The carbon ions have the same charge-to-mass ratio as deuterium ions. Their critical energy is three times 

larger than deuterium ones. This results in the following scaling for the critical energy as a function of ion charge state 

number  and atomic mass  (Table 2): 

, (23)

which is in agreement with the results of formula (22). 

Table 1.  values for different radial locations and ion species 

Hydrogen,  Deuterium,  Carbon C6+,

0.6 -0.556 -0.596 112 56 335 

0.7 -0.592 -0.621 57 28.5 171 

0.8 -0.626 -0.644 23 11.4 68.5 

0.9 -0.656 -0.664 5.2 2.6 15.5 

Table 2. The ratio of  to  for different ion species

1 1/2 1/3 4/3 1 3 6.4 7.2 8.1 

The obtained dependency implies that the tritium ions have the lowest critical energy and they will be lost stronger 

than the rest of the ions. The impurity ions have much higher critical energy than the hydrogen isotopes. It means the 

impurity should be heated selectively in order to extract them without the loss of plasma confinement. 

CONCLUSIONS

The analytical model of 2D tokamak magnetic field has been developed which allows the simulations of particle 

motion in plasma with the non-circular shape. The first orbit losses of particles have been simulated. The radial 

dependence of the minimal energy required for the particle to be lost from the confinement volume has been calculated. 

The obtained loss cones in the velocity phase space can be used to estimate the particle flux induced by the external 

heating.
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