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Abstract: Wave propagation and reflection in the model of asymmetrically branching tree of elastic 

cylindrical tubes filled with nonviscous fluid is considered when applied to pulse wave reflection in 

arterial networks. Influence of the geometrical and mechanical properties of the network and vessel wall 

on the pulse wave propagation and spectral properties of the total admittance of the network are 

investigated.  

It was found out that the admittance of the tree has a set of resonant harmonics. Any changes in 

parameters of microcirculatory bed cause noticeable alterations of the amplitudes of resonant harmonics 

and negligibly small alterations of other harmonics. The set of resonant harmonics is independent of some 

variations in the tree geometry. These results substantiate a possibility of the pulse diagnosis of inner 

organs state by observation the amplitudes of the resonant harmonics only without preliminary knowledge 

of  individual structure of  real vascular bed of an inner organ. 
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Introduction 

Pulsatile blood flow in cardiovascular system is produced by heart contraction and 

determined by a number of factors [1]. The hydrodynamic analysis of the flow must take into 

consideration certain properties such as arterial network geometry, arterial branching and 

vascular wall properties, blood rheology. The elasticity of the arterial walls is responsible for 

transforming the oscillatory cardiac outflow into a relatively steady blood flow in peripheral 
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vessels. Any inhomogeneity in both the geometrical and mechanical properties of vessels 

produces backward pulse wave.  

Pressure and flow waves change in shape and size as they travel through the network 

owing to the superposition of the forward and backward waves. The diameter of elastic vessels 

varies throughout the cardiac cycle. The diameter variations can be palpated on some superficial 

arteries with (the deep pulse) or without (the superficial pulse) an outer compression.  The skill 

of inner organs and regulatory systems evaluation by radial artery examination forms the basis of 

the pulse diagnosis in oriental medicine. The recent investigations make it possible to offer a 

new diagnostic method that is based on the concept of the so-called resonant frequencies [2]. 

Numerous experimental investigations and clinical observations revealed the existence of the 

unique set of resonant frequencies in Fourier spectrum of pulse of some inner organs (kidneys 

[3], liver [4], spleen [5] and gall bladder [6]). The corresponding amplitudes depend on the organ 

state (normal or pathological) and show the organ state in excess-deficiency terms inherent in the 

oriental medicine. The pulse wave parameters can be estimated on any peripheral artery with a 

cuff manometer only at the absence of preliminary special compressions of the artery. The nature 

of the resonant frequencies is still unknown whereas the method itself has been used in clinics 

[3-6]. The experimental measurements and theoretical investigations with application of 

electrical analogous models show that the main resonant frequency is connected with the length 

of the largest (supplying) artery of the organ network [7].  

The main properties of blood flow can be described on the basis of steady flow in a rigid 

cylindrical tube (Poiseuille’s flow). The features of the pulsatile flow, the influence of arterial 

wall properties on the motion were investigated on the basis of Windkessel model (or Frank’s 

elastic chamber) [1]. This model even in the modified form did not take into account the arterial 

network structure and can not explain pulse wave propagation and reflection features in different 

inner organ networks and in aorta. A general model based on the laws of classical mechanics was 

introduced by L.Euler (1755) and was extended in a series of papers by I.S.Gromeka (1883), 
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Witzig (1914), J.R.Womersley (1957). This model deals with a single cylindrical elastic tube in 

which the blood motion is described by differential equations based on the conservation laws of 

mechanics. A circulatory bed can be represented by a branching network of such tubes with 

different lengths and diameters. The value of input or effective admittance of the vascular 

network ( P/QYin = , P – pressure, Q  – the volumetric rate of flow in the longitudinal direction 

in the initial section of the supplying artery) can be obtained as a function of the network 

geometry and wall properties. Rather complete results were obtained for some dichotomous 

branching trees [8]. More realistic results have been obtained on the basis of the same theoretical 

model with precise morphometric data of coronary network construction [9]. In the present work 

the influence of geometrical and mechanical properties of arterial network on pulse wave 

propagation and spectral properties of the vascular bed admittance are investigated. 

 

Single tube with terminal element. 

One-dimensional motion of homogeneous nonviscous incompressible fluid in thin-walled 

elastic cylinder tube is considered. The tube is terminated by a Windkessel element (terminus) 

with the input admittance 21t iYYY += , where 2,1Y  – resistive and capacitive parts of the 

admittance, respectively. The fluid viscosity was neglected because of practically flat velocity 

profiles in the cross-sections of the arteries [1]. The pulse wave velocity reaches at last 5c =  m/c 

in elastic arteries, while velocity length d>>λ , where d  – vessel diameter. Thus, the profiles 

can be considered to remain flat during a cardiac cycle. The mass and impulse conservation laws 

in quasi-one-dimensional form are expressed by the following equations [10]: 
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where A denotes cross section of the tube, A/Q)x,t(U =  – average cross-sectional velocity, 

ρ – density of the fluid. The boundary conditions are: 

)t(P)0,t(P 0= , /
0 Y)t(P)0,t(U =        (3) 

)0,t(P)L,t(P t= , )L,t(PY)0,t(Q)L,t(Q tt ==      (4) 

where tP , tQ  – pressure and volumetric flow rates in the terminus, /Y – input admittance of the 

whole system tYY + , )c/(AY ρ=  – characteristic admittance of the tube, L – length of the 

tube. Here relations (4) represent the conditions of pressure and flow continuity at the tube and 

terminus joint. From (1)–(2) the wave equation for the pressure can be obtained: 
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= – velocity of the both forward and backward pulse waves.  

The backward wave appears at the terminus and superimposes the forward wave. Wave 

reflections modify the flow through a tube by altering the pressure distribution within the vessel 

and, therefore, modifying the effective admittance of the system. While the characteristic 

admittance Y  depends on the vessel properties only, the effective admittance /Y  depends on  

relationship between pressure and flow, thus, is affected by wave reflections [9]. 

For homogeneous thin-walled elastic tube dEhc ρ= , where E  – Young’s modulus for 

wall material, h – wall thickness. The solution of (1)–(3) may be obtained as superposition of the 

forward and backward waves: 

          )Ãee(eP)x,t(P c/)L2x(ic/xiti
f

−ωω−ω +=       (5) 

          )Ãee(eYP)x,t(Q c/)L2x(ic/xiti
f

−ωω−ω −=        (6) 

where )Eh(dAY ρ= – characteristic impedance of the tube, Γ – reflection coefficient at the 

terminus, f2π=ω – frequency of the wave. From (3)–(6) we finally receive the relation for  

effective admittance of the system: 
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where )YY()YY( tt +−=Γ , c/Li2z ω−= .  As a result, the system tYY +  can be represented as 

a single tube with complex admittance /Y . 

 

Asymmetric dichotomous branching arterial tree 

A branching system consisted of thin-walled elastic tubes is considered here (Fig.1–2). 

The branching order numeration of a tube is introduced by the rules: 

1) the supplying artery has the order 0i = ; 

2) two tubes with the orders 1i  and 2i  after their connection form a tube with the order  
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Each tube with the largest branching order ni =  terminates by the Windkessel element 

tY . The influence of branching angles on wave reflections will be considered negligibly small 

[1]. Thus, the pulse wave reflection in the system is fully defined by the set   

{ }N
1jjjjj E,h,L,dJ

=
=  of predetermined mechanical and geometrical properties of separate vessels 

of different branching orders n1j ÷= , where N – total number of vessels  in the system. 

Generally, the full set J has to be introduced using the morphometric data. 

Vascular beds of different organs exhibit certain regularities in geometry [11]. These 

regularities may be represented as the ratio between the average values of diameters and/or 

lengths of the consecutive vessels constbL/L L1jj ==+ , constbd/d d1jj ==+  or as a relation 

between the diameters 2,1,0
jd  of  parent and daughter vessels in bifurcation as follows: 

( ) ( ) ( )γγγ
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Fig.1. Symmetrical dichotomous branching arterial tree with 1b,, L =ζξ , 9.0b R = . 

 

Fig.2. Asymmetrical dichotomous branching arterial tree with 7.0=ζ=ξ 1b L = , 9.0b R = . 
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The majority of vascular networks in animal and plant tissues have 01.333.2 −=γ [12]. 

The networks exhibit self-similarity and optimal transport properties. Their geometry promotes 

minimising of the total cost of fluid delivering, network construction and maintenance. For the 

self-similar optimal transport systems the following relations may be introduced: 

j
d0j bdd >=< , j

L0j bLL >=<        (9) 
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where ζξ,  – coefficients of branching asymmetry, indexes R,L denote the daughter vessel on the 

right and left downstream, respectively, 2/)aa(a RL +>=< – average value  à. For the optimal 

systems 3=γ , 3/1
R 2b −=  [12]. For other coefficients in (9)–(10) the assumptions RL bb = , 

ζ=ξ  are often used because of allometric scaling of the vascular beds [9,11,12]. The relations 

(8)–(10) can be presented in a different way γγξ+ξ+= /12 )1()1(K , where 

2
0

2R2L d/))d()d((K +=  – branching coefficient. For the most mammal circulatory beds 

3.11.1K −=  [11].  

 Each element in the branching arterial tree, thus, possesses the characteristic impedance 

)Eh(ddY jjj
2
jj ρπ= . The system tn YY +  of two last elements in each branching can be 

considered as a new terminus for every tube with branching order 1nj −=  with the admittance 

/
nY  defined by (7). By this way we can obtain a new arterial tree with 1n −  branching orders 

terminated by  /
nY  instead tn YY + . It is worth noting that the admittances /

jY  are quite different 

even for the same values of tY  in each Windkessel element because of the tree asymmetry. By 

means of repeating this procedure a simple system consisting of the largest tube ( 0i = ) 

terminated by the effective terminus oY can be finally obtained. The geometrical and mechanical 
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properties of the whole arterial bed will be, thus, included in oY . The initial vascular tree and the 

system oYY0 +  will exhibit the same abilities in wave reflection.  

The simplest case of the symmetrical branching tree with 2/1K = , 3=γ  and unrealistic 

relation for the lengths )1j/(LL 0j +=  was investigated earlier [8]. In the present work the 

influence of parameters LR b,b,,ζξ  on the pulse wave reflections and on the resonant properties 

of different asymmetrical vascular beds was investigated numerically.  

 

Results and discussion 

 The experimental data shows that jj dh λ= , 2.014.0 −=λ , 510*)96(E −=  Pa and  

610*)21(E −=  Pà for the arteries of elastic and muscle types, respectively [1]. For the 

geometrical parameters in (8)–(10) the following values corresponding the structure of the 

vascular beds of inner organs were used: 12.0, ÷=ζξ , 3.10.1K ÷= , 9.06.0b,b RL ÷= [11,13]. 

Only self-similar trees were considered in terms of independency of the geometrical parameters 

R,Lb,K,, ζξ  from the branching order i . The scatter of distances from the input section of the 

largest artery to the places of wave reflection is monotonically increases with the 

R,Lb,, ζξ decreasing. For more symmetrical trees this scatter is relatively small and the trees will 

exhibit acute resonant properties because of quite equal times of the backward pulse waves 

traveling from different bifurcations with the same branching orders. This means that the results 

for asymmetric trees are more realistic. A random scattering of >< jL  and >< jR  values was 

introduced in [8] for the same reason.  

 The example in fig.2. shows the dependences between the dimensionless total effective 

admittance )f(Y *  and the frequency )2/(f πω=  of the pulse wave at 12.0 ÷=ξ . The effective 

admittance 0
*/

0 YYY =  corresponds to the system oYY0 +  and its value calculated by 

substituting 0YY = , oYYt =  in (7). The first maximum in )f(Y *  defines the main resonant 
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frequency in terms [2–7]. At wide variation of ξ  the main frequency variations do not exceed 

6± Hz (at 12.0 ÷=ζ , 9.06.0b,b RL ÷= ) and lay within the same harmonic. For the pulse rate 

60–75 1/min (the frequency of the main harmonic of the pulse wave 25.11f 0 −= ) the case in 

fig.3 corresponds to the resonance at the 5-th harmonic. In this case the modulus of impedance is 

maximum at the 5-th harmonic and, thus, the correspondent component of blood flow will enter 

in the vascular bed of the organ. Controversially, the modulus of impedance is minimum at the 

3-rd ( 74f −= Hz)  harmonic and so this component will be mostly reflected by the tree. A 

corresponding enhancement of the 3-rd and weakening of the 5-th harmonics can be measured 

on any peripheral artery out-of the vascular tree of the organ.  

 The findings of our calculations have shown that the influence of asymmetry in the 

average lengths of the arteries ζ  is negligible. All the changes are observed within the same 

harmonic and corresponding variations do not exceed 2± Hz. The corresponding illustration is 

given in fig.4. The first relative maximum corresponds to the 5-th harmonic ( 1815f −= Hz); the 

first global maximum – at the 6-th harmonic ( 4239f −= Hz); the first local minimum – at the 4-

th harmonic ( 119f −= Hz). According to the terminology [2–7], 5i =  is the main resonant 

harmonic, while 6,4i =  are additional harmonics for the pulse diagnosis. The set of harmonics is 

the same for cases in fig.3–4 and depends on the 0L  only. This result matches the experimental 

observations [7].  

 The values of Lb  connect not with the pathological state of the organ but with the 

construction peculiarities of its arterial network because of the longitudinal tethering of the 

vessels to outer tissues. The variations of Rb  reflect the vessel wall pathology (atherosclerosis, 

hypertrophy) and the pathological state of the organ (inhomogeneous blood distribution within 

the organ, blood outflow difficulties). Our calculations revealed that even slight variations of 

1.0~bRδ  led to noticeable changes in the amplitudes of the resonant harmonics. Thus, the 

individual scattering of geometrical parameters of the bed is insignificant, whereas any  
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Fig.3. The dependence )f(Y * at 1b, R,L =ζ , 2.0L0 =  m, 03.0d 0 =  m. The numbers 1–4 

correspond to 8.0;6.0;4.0;2.0=ξ  respectively. 

 

 

Fig.4. The dependence )f(Y * at 1b, R =ξ , 2.0L0 =  m, 03.0d 0 =  m. The numbers 1–4 and 

// 41 − correspond to 8.0;6.0;4.0;2.0=ξ , 1;6.0b L =  respectively. 
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pathological variations caused considerable alterations of the amplitudes corresponding to the 

resonant harmonics of the effective admittance )f(Y * .  

 The input admittance *Y  is mostly influenced by reflection coefficient nΓ  at the 

terminus. The real and image parts of the admittance of the terminus )YRe( t , )YIm( t describe 

the resistive and capacitive properties of the microcirculatory (capillary) bed, respectively. If 

tn YY = , then 0n =Γ  and pulse wave reflection at the terminus is absent (fully coordinated 

impedances). If 0Yt = , then 1n =Γ  (reflection at the closed end of the tube).  In both cases the  

reflection coefficient at each junction jΓ  is a complex number. In real vascular beds the extreme 

cases 1;0n =Γ are impossible. After the capillary wall rigidity increasing and in all cases of 

swelling, the value )YRe( t  increases, and by this way the amplitude of the backward pulse wave 

increases also. The wall compliance increasing causes the increasing of )YIm( t . Thus, the 

increasing )YRe( t  and decreasing )YIm( t  correspond to the redundancy syndrome in the terms 

of oriental medicine [3–6]. Respectively, )YRe( t  decreasing and )YIm( t  increasing correspond 

to the insufficiency syndrome.  

 Some results of the calculations for the symmetric tree with 1.0L0 =  m and asymmetric 

tree with 25.0L0 =  (represented in fig.1) the dependences )m(Y *  are shown in fig.5–6, 

respectively. The influence of the variation )YRe( t on the *Y  is significant at several (resonant) 

harmonics. The set of the resonant harmonics for the tree is defined by the length of the largest 

vessel [2]. For the self-similar vascular beds considered here it implies the influence of the so-

called caliber or scale of the bed on the set of resonant harmonics. At wide variation of 

pathologically significant parameters )YRe( t  and )YIm( t , the amplitude of the total effective 

admittance of the tree undergoes maximal variations at resonant frequencies and slightly 

noticeable variations at other harmonics. The dependence in fig.5 agree closely the same 

experimental dependence obtained for the arterial tree of kidneys. In a general case the arterial  
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Fig.5. The dependence )m(Y *  for the symmetrical arterial tree with 1b,, R,L =ζξ , 1.0L0 =  m, 

02.0d 0 =  m. The numbers 1–4 correspond to 8.0;6.0;4.0;2.0)YRe( t =  respectively. 

 

Fig.6. The dependence )m(Y *  for the asymmetrical arterial tree with 7.0=ζ=ξ 1b L = , 

9.0b R = , 25.0L0 =  m, 03.0d 0 =  m. The numbers 1–4 correspond to 8.0;6.0;4.0;2.0)YRe( t = . 

 

trees in kidneys are symmetrical with 1~b L,R , 8.0~, ζξ  [3,11]. The set of the resonant 

harmonics m=3;2 are the same for both dependences (theoretical, presented here and 
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experimental in [3]) up to the m=6, inclusively. The main resonant harmonics for 301L0 −= cm 

accordingly to the calculations on the model proposed here are presented in table 1.  

 The proposed model should be generalized to the viscous fluid and viscoelastic 

longitudinally tethered tubes. In the first case all the relations (5)–(7) remain valid with 

)1()F1(c)(c 2
w σ−−=ω instead c, where σ  – Poisson’s modulus for the vessel wall material,  

))z(zJ()z(J2F 01w =  – Womersley function, 1,0J  – Bessel’s first order functions , 2/3iz α= , 

µω=α R  – Womersley number, 1i −= , µ  – kinematical viscosity of the fluid.  

 

Table1.  

Numbers of the main and one additional resonant harmonics for different artery lengths 

0L  and pulse wave velocities c. 

0L (cm) >25 21–25 16–21 11–16 6–11 3–6 1–3 

m at 5c = m/s 1;6 2;3 3;6 3;7 4;6 5;6 6;7 

m at 10c = m/s 2;7 3;6 4;7 4;7 5;8 6;7 7;9 

m at 15c = m/s 3;8 4;4 4;7 5;8 5;9 6;9 7;9 

m at 20c = m/s 3;8 4;5 5;8 6;9 6;5 7;9 8;10 

 

 

Conclusions 

1. The main features of pulse wave propagation and reflection in the arterial network of the 

inner organs can be investigated on the basis of the model of asymmetrically branching 

tree consisting of elastic tubes. The simple iterative procedure allows calculation of the 

total effective admittance  *Y  of the system as a function of the wave frequency ω .  
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2. Any individual variations in geometry of a vascular bed (asymmetry of the lengths ζ  and 

diameters ξ  of the consecutive vessels, scaling parameter  Lb ) cause negligibly small  

alterations in the dependence )(Y * ω . This result provides explanation of the possibility 

of the pulse diagnosis of pathological state of the inner organs without preliminary 

knowledge of the individual vascular tree structure. 

3. Any variations in pathologically significant parameters (deviations in diameters of the 

consecutive vessels Rb , parameters of microcirculatory bed state )YRe( t , )YIm( t ) 

cause considerable alterations of the amplitudes of several (resonant) Fourier harmonics 

of the total effective admittance )(Y * ω  and slightly noticeable alterations of the 

amplitudes of other harmonics. The resonant harmonics correspond to the first local 

maximum and minimum of the function )(Y * ω  and to its global extremums, as well. 

4. A set of the resonant harmonics is unique for the given arterial tree and is defined by the 

lengths of the vessels only. For the self-similar tree it means the dependence of the set on 

the length of the largest (supplying) artery of the vascular bed only, and thus on the 

caliber (scale) of the inner organ itself. 

5. The obtained results allow to substantiate theoretically the recently proposed new pulse 

diagnosis method [2–7].  
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