УДК 519.4

С. Л. ГЕФТЕР, В. Я. ГОЛОДЕЦ, Н. И. НЕССОНОВ

СЧЕТНЫЕ Т-ГРУППЫ И АЛГЕБРЫ НЕИМАНА

В ряде задач эргодической теории и теории представлений полупростых групп Ли возникают алгебры Неймана, не допускающие аппроксимации конечномерными подалгебрами. Такие алгебры обладают замечательными свойствами, резко отличающимися от соответствующих свойств в аппроксимативно конечном случае. Изучение не аппроксимативно конечных факторов связано в основном с использованием так называемых T-групп [1].

Пусть G— счетная T-группа, у которой все классы сопряженности, кроме тривиального, бесконечны. А. Конн показал, что групповой фактор R (G) имеет счетную фундаментальную группу [2]. G будем в дальнейшем называть TICC-группой, а R (G)— фактором Конна. В работе [3] рассмотрены действия TICC-групп на инъективных алгебрах Неймана, и для любой счетной подгруппы Γ в R_+^* построен II_1 -фактор со счетной фундаментальной группой, содержащей Γ . Таким образом было показано, что существуют факторы типа II с различными счетными фундаментальными группами, и TICC-группа имеет континуум неэквивалентных действий на аппроксимативно конечном факторе типа II_1 .

Настоящая статья посвящена изучению связи T-свойства со счетностью фундаментальных групп и свойствам полных факто-

ров типа III.

Определения и предварительные сведения даны в § 1. Результаты и методы работы [3] в § 2 использованы для доказательства счетности фундаментальных групп факторов, связанных с представлениями и действиями ТІСС-групп (см. теорему 1.1 и ее следствия), а в § 3 применяются к построению неизоморфных полных факторов типа III, с фиксированным точечным модулярным спектром (теорема 2.4). В § 4 строятся II₁-факторы со счетными фундаментальными группами и негомеоморфными группами внешних автоморфизмов. В частности, приведен пример ІССгруппы без Т-свойства, групповой фактор которой имеет счетную фундаментальную группу и не изоморфен фактору Конна (теорема 3.6 и предложение 3.3), и пример фактора типа II, с неизоморфными тензорными степенями (следствие 3.4). Построены также два траекторно неэквивалентных действия группы $SL(n, \mathbb{Z})$ для каждого $n \geqslant 3$ (следствие 3.7). Этот пример интересен в связи с результатом Зиммера о том, что эргодические действия групп SL(n, Z), n > 3, траекторно неэквивалентны при разных n.

§ 1. Основные определения и обозначения. Напомним, что локально компактная группа обладает свойством T, если ее одномерное тривиальное представление является изолированной точкой в пространстве классов эквивалентности неприводимых

унитарных представлений [1].

Если G — счетная дискретная группа, то T-свойство означает существование конечного множества $K \subset G$ и $\varepsilon > 0$, которые удовлетворяют следующему условию: для любого унитарного представления v группы G, если существует $\eta \in H_v$ такой, что

$$\|\eta\| = 1 \quad \text{if } \|v_g\eta - \eta\| < \varepsilon, \ g \in K, \tag{1}$$

то найдется ненулевой $\xi \in H_n$, для которого $v_{g}\xi = \xi$, $g \in G$.

Обозначим через Aut M группу *-автоморфизмов фактора M. B Aut <math>M введем топологию с помощью базы окрестностей единицы:

$$U_{\varphi, \varepsilon} = \{ \theta \in \text{Aut } M : \| \varphi \circ \theta - \varphi \| < \varepsilon \}, \ \varphi \in M_*, \ \varepsilon > 0.$$
 (2)

Если M имеет сепарабельный преддуал M_{\ast} , то Aut M с топологией (2) является сепарабельной топологической группой и даже полным сепарабельным метрическим пространством.

Фактор M называется полным, если Int M — замкнутая подгруппа в Aut M. Здесь Int M — группа внутренних автоморфиз-

мов M.

Пусть $N = \text{II}_1$ -фактор с точным нормальным (т. норм.) конечным следом τ , $B = \text{I}_{\infty}$ -фактор с т. норм. полуконечным следом tr. Тогда $M = N \otimes B = \text{II}_{\infty}$ -фактор с т. норм. полуконечным следом $\tau \otimes \text{tr}$. Через $\text{Aut}_0 M$ обозначим подгруппу в Aut M, состоящую

из автоморфизмов M, сохраняющих след $\tau \otimes \operatorname{tr}$. Aut M является нормальной подгруппой в Aut M, и факторгруппа Aut $M/\operatorname{Aut}_0 M$ называется фундаментальной группой фактора N.

Через Out N обозначим группу внешних автоморфизмов фак-

тора N.

§ 2. Факторы типа II со счетными фундаментальными группами. В этом параграфе доказана счетность фундаментальных групп у следующих факторов: 1) скрещенного произведения фактора Конна на группу внешних автоморфизмов (следствие 1.2); 2) скрещенного произведения конечной алгебры Неймана на эргодическую *TICC*-группу автоморфизмов (следствие 1.3).

Пусть N — фактор типа Π_1 с сепарабельным преддуалом, G —

счетная Т-группа.

Теорема 1.1. Если u — представление G унитарными операторами N, удовлетворяющее условию $u(G)' \cap N = C$, где u(G)' — коммутант u(G), то N — полный фактор со счетной фундаментальной группой.

Доказательство теоремы 1.1 было получено В. Я. Голодцом

и Н. И. Нессоновым.

Доказательство. Рассмотрим II_{∞} -фактор $M=N\otimes B$, действующий стандартно в $L^2(M,\tau\otimes \operatorname{tr})$. Пусть A_G — подгруппа в Aut M, порожденная в алгебраическом смысле Int M и $\{\theta\in\operatorname{Aut} M:\theta(u_g\otimes 1)=u_g\otimes 1,\,g\in G\}$. Покажем, что A_G открыта в топологии (2). Для $\theta\in\operatorname{Aut} M$ определим унитарное представление G в $L^2(M,\tau\otimes\operatorname{tr})$: $\pi_{\theta}(g)=I(u_g\otimes 1)$ $I\theta(u_g\otimes 1)$. Здесь I— унитарная инволюция в $L^2(M,\tau\otimes\operatorname{tr})$: $I(x\xi_0\otimes b)=x^*\xi_0\otimes b^*$, $b\in L^2(B,\operatorname{tr})$, ξ_θ — циклический отделяющий вектор в $L^2(N,\tau)$ для N. Пусть $K\subset G$ и $\varepsilon>0$ определяются T-свойством G и $\eta==\xi_0\otimes b$. Рассмотрим множество

$$U = \{ \theta \in \text{Aut } M : \| \pi_{\theta}(g) \eta - \eta \| < \varepsilon, \ g \in K \}.$$
 (3)

Если $\theta_n \notin U$, то существует $g_0 \in K$ такое, что $\|\pi_{\theta_n}(g_0)\eta - \eta)\| > \infty$. Пусть теперь $\theta_n \to \theta$ в топологии (2). Тогда $\|\psi(\theta_n(u_{g_0} \otimes 0)) - \psi(\theta(u_{g_0} \otimes 1))\| < \|\psi_0\theta_n - \psi_0\theta\| \to 0$, $\psi \in M_*$, т. е. $\theta_n(u_{g_0} \otimes 0)$ слабо сходится к $\theta(u_{g_0} \otimes 1)$, а значит и сильно, так как $\theta_n(u_{g_0} \otimes 1)$ и $\theta(u_{g_0} \otimes 1)$ — унитарные операторы. Отсюда $\pi_{\theta_n}(g_0)\eta$ сходится к $\pi_{\theta}(g_0)\eta$. Следовательно, $\theta \notin U$, т. е. U — открытое множество. Далее, $\pi_{\text{id}}(g)\eta = \eta$, $g \in G$, и таким образом, U — окрестность единицы в группе Aut M. В силу (1) и (3), если $\theta \in U$, то $L^2(M)$, $\tau \otimes \text{tr}$) содержит $y \neq 0$ такой, что $\pi_{\theta}(g)y = y$, $g \in G$, или $\theta(u_g \otimes 1)y = I(u_g^* \otimes 1)Iy$, $g \in G$.

Лемма. Существует частичная изометрия v∈M такая, что

$$\theta(u_g \otimes 1)v = v(u_g \otimes 1), g \in G.$$
 (5)

Доказательство. Рассмотрим гильбертову алгебру (H, I, D), где $H = L^2(M, \tau \otimes \text{tr}), D = \bar{L}^-(M, \tau \otimes \text{tr}) \cap L^2(M, \tau \otimes \text{tr}).$ Условимся обозначать $Ix = x^*, L_a x = ax, R_a x = xa, (a \in D, x \in H).$ Тогда $IL_a I = R_{a^*}, a \in D$. Далее, положим $L(H) = \{L_a : a \in D\}^n$, $R(H) = \{R_a : a \in D\}^n$. Понятно, что $\bar{b} \in \bar{M}$ определяет $L_b x = bx$, $R_b x = Ib^*Ix = xb, x \in \bar{D}$, принадлежащие L(H) и R(H) соответственно, и $b \mapsto L_b$ есть *-изоморфизм M на L(H).

Всякому $x \in H$ можно сопоставить оператор L_x в H, определенный на $D \subset H$ согласно формуле $L_a = R_a x$, $a \in D$. Оператор L_x допускает замыкание L_x . измеримое относительно L(H). Перепишем теперь соотношение (4) с помощью операторов L_a и

 $R_b(a, b \in M)$.

$$L_{\theta(u_{\mathbf{g}}\otimes 1)}y = R_{u_{\mathbf{g}}\otimes 1}y, \ g \in G.$$
 (6)

Если $c\in D$, то $R_cL_{\theta(u_g\otimes 1)}y=R_cR_{u_g\otimes 1}y$ и $\bar{R}_z\bar{L}_{\theta(u_g\otimes 1)}y=L_{\theta(u_g\otimes 1)}\times$ \times $\bar{R}_z u=L_{\theta(u_g\otimes 1)}L_b'c$. Аналогично $R_cR_{u_g\otimes 1}y=R_{(u_g\otimes 1)c}y=\bar{L}_x\times$ \times $(u_x(\bar{x}))c=L_y'L_{u_g\otimes 1}c$. Таким образом, имеет место равенство $L_{\theta(u_g\otimes 1)}L_b'c=L_y'L_{u_g\otimes 1}c$ $(g\in G,\ c\in D)$. Если $b_n\to b$, где $b_n\in D,\ b\in D(L_y)$ и $L_y'b_n\to L_yb$, то $L_{u_g\otimes 1}b_n\to L_{v_g\otimes 1}b$ и $L_y'(L_{u_g\otimes 1}b_n)=L_{\theta(u_g\otimes 1)}L_y'b_n\to L_{\theta(u_g\otimes 1)}L_yb$. Следовательно,

$$L_{y}L_{u_{g}\mathfrak{D}^{1}}b=L_{\theta(u_{g}\mathfrak{D}^{1})}L_{y}b\left(g\in G,\ b\in D\left(L_{y}\right),\right.$$

и поэтому

$$L_{y}L_{u_{g}\mathfrak{D}^{1}}=L_{\theta(u_{g}\mathfrak{D}^{1})}L_{y},\ g\in G. \tag{7}$$

Применим I к равенству (6), тогда $\bar{R}_{\underline{u}(\underline{u}_{\underline{g}},\underline{y})}\underline{v}^{\hat{x}} = \bar{L}_{\underline{u}_{\underline{g}},\underline{y}}y^{\hat{x}}$. Проделывая с этим равенством преобразования такие же, как и с (6), мы получим соотношение

$$L_{y*}L_{\theta(u_g\otimes 1)} = \bar{L}_{u_g\otimes 1}\bar{L}_{y*}, \ g\in G. \tag{8}$$

Но $L_{x^*} = L_x^*$ и (8) можно переписать в виде

$$L_{u_g \otimes 1} L_y^* = L_y^{\dagger} L_{\theta(u_\sigma \otimes 1)}, g \in G.$$
 (8')

Из выражений (7). (8') для $g \in G$ имеем

$$L_{u_{\mathbf{g}}\otimes 1}L_{y}^{*}L_{y} = L_{y}^{*}L_{y}L_{u_{\mathbf{g}}\otimes 1}. \tag{9}$$

Пусть $\bar{L}_y = V | L_y |$ — полярное разложение L_y . Так как \bar{L}_x и $| L_y$ присоединены к L(H), то $V \in L(H)$, а поэтому $V = \bar{L}_v$. Для некоторой частичной изометрии $v \in M$. Далее, из (7) и (9), учитывая, что $| L_y |^2 = L_v^* L_y$, выводим следующее соотношение: $L_{\theta(u_g \otimes 1)} \times L_v | L_y | = \bar{L}_v \bar{L}_{u_g \otimes 1} | \bar{L}_y |$, откуда $L_{\theta(u_g \otimes 1)v} = \bar{L}_{n(u_g \otimes 1)}$, или $\theta(u_g \otimes 1)v = v(u_g \otimes 1)$, $g \in G$. Лемма доказана.

Пусть теперь $q=v^*v$. Тогда из (5) следует, что $v^*v=(u_{\underline{s}}^*\otimes 1)\,v^*v\,(u_{\underline{s}}\otimes 1)$, т. е. $q\in\{u_{\underline{s}}\otimes 1\colon g\in G\}'\cap M=1\otimes B$. Положим $M=M\otimes B$, $B=B\otimes B$, $\theta_1=\theta\otimes \operatorname{id}$, $q_1=q\widehat{\otimes} i$, $v_1=v\otimes 1$. Тогда $q_1, 1-q_1, p_1=v_1v_1^*, 1-p_1$ — бесконечные проекторы, а поэтому в унитарной группе $U(\widetilde{M})$ существует оператор w_1 такой, что $w_1v_1=q_1$, и, следовательно, $(\operatorname{Ad}w_1\theta_1)(u_{\underline{s}}\otimes 1)\,q_1=w_1\theta_1\,(u_{\underline{s}}\otimes 1)\,w_1^*q_1=w_1\theta_1\,(u_{\underline{s}}\otimes 1)\,v_1=w_1v_1\,(u_{\underline{s}}\otimes 1)=q_1\,(u_{\underline{s}}\otimes 1)=u_{\underline{s}}\otimes q_1,$ $g\in G$. Но тогда $(u_{\underline{s}}\otimes 1)\,(\theta_1^{-1}\operatorname{Ad}w_1^*)\,(q_1)=(\theta_1^{-1}\operatorname{Ad}w_1^*)\,(q_1)\,(u_{\underline{s}}\otimes 1),$ $g\in G$, и поэтому $(\theta_1^{-1}\operatorname{Ad}w_1^*)\,(q_1)\in 1\otimes \widetilde{B}$. Поскольку $(\theta_1^{-1}\operatorname{Ad}w_1^*)\times (q_1)$ и $1-(\theta_1^{-1}\operatorname{Ad}w_1^*)\,(q_1)$ — бесконечные проекторы из $1\otimes \widetilde{B}$, то существует \widetilde{w}_2 из $U(1\otimes \widetilde{B})$, такой, что $(\theta_1^{-1}\operatorname{Ad}w_1^*)\,(q_1)=\widetilde{W}_2^q_1\widetilde{w}_2^*$. Положим $w_2=\theta_1^{-1}\,(w_1)\,\widetilde{w}_2$. Тогда $(\theta_1\operatorname{Ad}w_2)\,(q_1)=(\operatorname{Ad}w_1\theta_1\operatorname{Ad}w_2)\,(q_1)=q_1$ и

$$(\theta_1 \operatorname{Ad} w_2) (u_g \otimes q_1) = u_g \otimes q_1, \ g \in G. \tag{10}$$

Пусть $e_{11}=q_1$, $e_{22}=1-q_1$. Найдется частичная изометрия $e_{12}\in\{0\}$ $\in\{0\}$, сплетающая e_{11} и $e_{12}\colon e_{12}e_{21}=e_{11}$, $e_{21}e_{12}=e_{22}$, $(e_{21}=e_{12}^*)$. Если $w_2=e_{11}+e_{21}$ $(\theta_1\operatorname{Ad} w_2)(e_{12})$, то w_3 — унитарный, $(\operatorname{Ad} w_3)\times(e_{ii})=e_{ii}$ и $(\operatorname{Ad} w_3\theta_1\operatorname{Ad} w_2)(e_{ij})=e_{ij}(i,\ j=1,\ 2)$, так как $(\theta_1\operatorname{Ad} w_2)(e_{11})=e_{11}$. Кроме того, согласно (10)

$$(\operatorname{Ad} w_3)(u_g \otimes q_1) = u_g \otimes q_1, \ g \in G. \tag{11}$$

Положим $w_4 = w_3 \theta_1(w_2)$. Тогда из (10), (11) получаем

$$(\operatorname{Ad} w_4 \theta_1) (u_g \otimes q_1) = u_g \otimes q_1, \ g \in G. \tag{12}$$

Далее, $(\mathrm{Ad}\,w_4\theta_1)(u_g\otimes(1-q_1))=(\mathrm{Ad}\,w_4\theta_1)(u_g\otimes e_{22})=(\mathrm{Ad}\,w_4\theta_1)\times \times (e_{21}(u_g\otimes q_1)e_{12})=e_{21}(u_g\otimes q_1)e_{12}=u_g\otimes(1-q_1),$ в силу (12). Таким образом, $(\mathrm{Ad}\,w_4\theta_1)(u_g\otimes 1)=u_g\otimes 1,$ $g\in G.$ Поскольку $\{u_g\otimes 1:g\in G\}'\cap \widetilde{M}=1\otimes B,$ то $(\mathrm{Ad}\,w_4\theta_1)(1\otimes B)=1\otimes B.$ В $U(1\otimes B)$ существует w_5 такой, что $(\mathrm{Ad}\,(w_4w_5)\theta_1)(1\otimes x)=1\otimes x,$ $x\in B.$ Отсюда $(\mathrm{Ad}\,w\theta_1)(u_g\otimes 1)=u_g\otimes 1,$ где $w=w_5w_4,$ $g\in G.$ Так как $\theta_1=\theta\otimes id$, то для всякого $u\in B$ будем иметь $(\mathrm{Ad}\,w\theta_1)\times \times (1\otimes 1\otimes y)=(\mathrm{Ad}\,w)(1\otimes 1\otimes y)=1\otimes 1\otimes y,$ и поэтому $w\in M\otimes 1.$ Мы приходим к заключению, что A_G содержит U, т. е. A_G — открытая подгруппа. Но $A_G\subset \mathrm{Aut}_0M$, а значит и Aut_0M — открытая подгруппа. Следовательно, фундаментальная группа фактора N счетна, так как $\mathrm{Aut}\,M$ — сепарабельное метрическое пространство в топологии (2). Полнота N доказывается так же, как и в [2].

Теорема 1.1 полностью доказана.

Следствие 1.2. Пусть G-TICC-группа, K-счетная группа, действующая на R(G) внешними автоморфизмами. Тогда фактор $P=R(G)\times_{\alpha}K$, являющийся скрещенным произведением R(G) на K, полный и имеет счетную фундаментальную группу.

R(G) в P, r_g — операторы регулярного представления G. Тогла u'(G)' \cap $P=\pi(R(G))'$ \cap P=C, т. к. действие внешнее. Таким образом, представление u_g удовлетворяет условию теоремы I.1.

Следствие 1.3. Пусть N— конечная алгебра Неймана c сепарабельным преддуалом, α — действие TICC-группы G на N, сохраняющее m. норм. конечный след τ . Если действие эргодическое, m. e. алгебра неподвижных точек тривиальна, то $P = N \times_{\alpha} G$ — полный фактор со счетной фундаментальной группой.

Доказательство. Фактор $P=N\times_{\alpha}G$ порождается операторами $\pi(x)$ и $\lambda_g(x\in N,\ g\in G)$, действия которых в пространстве $l^2(G;\ H)$ определяются соотношениями $(\pi(x)\xi)(h)=\alpha_{h^{-1}}(x)\xi(h)$, $(\lambda_g\xi)(h)=\xi(g^{-1}h)$, где $\xi\in l^2(G;\ H)$ и алгебра N действует в пространстве H. Условие $\lambda(G)'\cap P=C$ выполняется, так как G=-ICC-группа, действующая эргодически.

В § 4 мы приведем примеры и покажем, что II₁-факторы, построенные в 1.2 и 1.3 могут быть не изоморфны фактору Конна.

§ 3. Неизоморфные полные факторы типа III_1 с фиксированным точечным модулярным спектром Sd. Напомним, что точный нормальный (т. норм.) полуконечный вес ϕ на алгебре Неймана называется почти периодическим (п. п.), если соответствующий модулярный оператор Δ_{ϕ} имеет чисто точечный спектр.

Пусть α -действие счетной группы G на алгебре M. Ограниченная по нерме последовательность $\{x_n\}$ из M называется асимптотически инвариантной, если $s = \lim_{n \to \infty} \{x_n - \alpha_g(x_n)\} = 0$, $g \in G$. Две ограниченные последовательности $\{x_n\}$ и $\{y_n\}$ называются эквивалентными, если $s = \lim_{n \to \infty} (x_n - y_n) = 0$.

Лемма 2.1. Если α -действие T-группы G на ΠII_{λ} -факторе M ($0 < \lambda < 1$), сохраняющее n. n. состояние ϕ , то любая асимптотически инвариантная последовательность эквивалентна инвариантной.

Доказательство. Так как φ инвариантно, относительно действия α , то модулярная группа σ^{φ} оставляет инвариантной алгебру неподвижных точек M^G . Следовательно, существует т. норм. условное ожидание E из M на M^G и $\varphi=\varphi\circ E$. Для асимптотически инвариантной последовательности $\{x_n\}$ докажем, что $s-\lim_{n\to\infty}(x_n-E(x_n))=0$. Предположим, что $\|x_n-E(x_n)\|_{\varphi}\to 0$ и подпоследовательность $\{n_k\}$ такова, что $\|x_n-E(x_n)\|_{\varphi}\to \delta$. Существует $m\in N: \|\alpha_g(x_{n_m})-x_{n_m}\|_{\varphi}<\delta\cdot \varepsilon, \ g\in K$. Здесь $\varepsilon>0$ и K определяются T-свойством. Рассмотрим унитарное представление u_g группы $G: u_g(x\xi_0)=\alpha_g(x)\xi_0, \ x\in M, \xi_0$ — циклический отделяющий вектор, соответствующий φ . Пусть $v=u_{|H_1}$, где $H_1=M^G\xi_0$. Если $a=\{x_{n_m}-E(x_{n_m})\}, \ \eta=\|a\|^{-1}a\xi_0$, то $\|\eta\|=1$,

 $\eta \in H_2$, так как E(a) = 0, и $\|v_g \eta - \eta\| < \epsilon$ для $g \in K$. Следовательно, найдется $\xi \in H_2$, $\xi \neq 0$ и $v_g \xi = \xi$ для $g \in G$. Очевидно, что $\Delta_{\phi}^{t'}$ оставляет H_2 инвариантным и коммутирует с v_g . Если $\Delta_{\phi} = \sum_{\tau \in \Gamma} \gamma E_{\tau}$ — спектральное разложение Δ_{ϕ} , а Γ —его точечный спектр, то E_{τ} также оставляет H_2 инвариантным и коммутирует с v_g . Докажем, что $E_{\tau} \xi = 0$, $\gamma \in \Gamma$. В случае $\gamma \geqslant 1$ существует частичная изометрия $w \in M$ такая, что $\sigma_t^{\phi}(w) = \gamma^{t'}w$, $ww^* = 1$. Но тогда $\Delta_{\phi}^{t'}w^*E_{\tau} \xi = w^*E_{\tau} \xi$, т. е. $w^*E_{\tau} \xi \in \overline{M_{\tau} \xi_0}$, где M_{ϕ} — централизатор состояния ϕ . Так как M_{ϕ} — конечная алгебра, то $w^*E_{\tau} \xi = z \xi_0$ для некоторого замкнутого измеримого оператора z, присоединенного к M_{ϕ} . Таким образом, $E_{\tau} \xi = wz \xi_0$. Поскольку $u_g E_{\tau} \xi = E_{\tau} \xi$, то $u_g wz = wz u_g$. Используя это равенство, можно показать, что $E_{\tau} \xi \in \overline{M}^{\sigma} \xi_0 = H_1$, а значит $E_{\tau} \xi = 0$, так как $E_{\tau} \xi \in H_2 = H_1^+$. Случай $0 < \gamma < 1$ рассматривается аналогично. Из разложения $\xi = \sum_{\tau \in \Gamma} E_{\tau} \xi$ следует, что $\xi = 0$. Полученное противоречие и доказывает лемму.

Теорема 2.2. Пусть α — эргодическое действие TICC-группы G на M, сохраняющее n. n. состояние φ . Тогда $M \times_{\alpha} G$ — пол-

ный фактор.

Доказательство. Фактор $M \times_{\alpha} G$ порождается операторами $\pi(a)$ и $\lambda_{\underline{g}}(a \in M, \underline{g} \in G)$. Если $x = \sum_{\underline{g} \in G} \pi(x_{\underline{g}}) \lambda_{\underline{g}}$, то положим $\psi(x) = \varphi(x_{\underline{e}}), \ \beta_{\underline{g}}(x) = \lambda_{\underline{g}} x \lambda_{\underline{g}}^*$. Тогда $\psi - \pi$. π . состояние на $M \times_{\alpha} G$ и действие β группы G сохраняет ψ . Используя тот факт, что G - ICC-группа и действие α эргодическое, можно показать, что β — эргодическое действие G на $M \times_{\alpha} G$ (заметим, что $\lambda_{\underline{g}}$ лежат в централизаторе ψ). В силу леммы 2.1 все центральные последовательности $M \times_{\alpha} G$ тривиальны, и $M \times_{\alpha} G$ — полный (см. [5]).

Для изучения полных факторов типа III_1 в работе [5] был введен следующий инвариант: $Sd(M) = \bigcap_{\Phi} Spec_{\sigma}\Delta_{\Phi}$ — пересечение точечных спектров модулярных операторов, соответствующих п. п. весам на M. Если M — полный III_1 -фактор с сепарабельным преддуалом и п. п. состоянием, то Sd(M) — счетная плотная подгруппа в R_+^* , и для любой такой подгруппы Γ существует полный III_1 -фактор M в сепарабельном пространстве с $Sd(M) = \Gamma$ [5, следствие 4.4].

Пусть $\lambda_i \in (0, 1)$ — образующие счетной плотной подгруппы $\Gamma \subset \mathbf{R}_+^*$. Рассмотрим фактор $R_\Gamma = \bigotimes_i R_{\lambda_i}$ и состояние $\phi_\Gamma = \bigotimes_i \phi_{i'}$ где \overline{R}_{λ_i} — аппроксимативно конечный фактор типа Π_{λ_i} , ϕ_i — т. норм. состояние на \overline{R}_{λ_i} . модулярная группа которого имеет период $T_i = -2\pi/\ln \lambda_i$. Тогда ϕ_Γ — п. п. состояние, и точечный спектр Δ_{ϕ_Γ} равен Γ , т. е. ϕ_Γ — Γ — п. п. состояние. Построим

 Π_1 -фактор $(N(\Gamma), q_{\Gamma}) = \bigotimes_{g \in G} (M_g, q_g)$. Здесь G = TICC-группа,

 $M_{\bf g} \approx R_{\Gamma}, \ \phi_{\bf g} = \phi_{\Gamma}$ для всех ${\bf g} \in G$. Обозначим через I_h вложение R_{Γ} в h-ю компоненту $N(\Gamma)$ и зададим действие α группы G на $N(\Gamma)$: $\alpha_{\bf g}(I_h(x)) = I_{g^{-1}h}(x), \ x \in R_{\Gamma}$. Это действие эргодично и сохраняет состояние ϕ_{Γ} . Рассмотрим скрещенное произведение $K(\Gamma) = N(\Gamma) \times_{\alpha} G$ и п. п. состояние ψ_{Γ} , построенное каноническим способом по ϕ_{Γ} . Если теперь Λ — подгруппа Γ , плотная в R^* и порожденная λ_{i} . $i \in I$, а Λ' порождена λ_{i} , $i \in N \setminus I$, то положим $N(\Gamma, \Lambda) = N(\Lambda) \otimes N(\Lambda') \phi_{\Lambda'}$, $\phi = \phi_{\Lambda} \otimes \phi_{\Lambda'}$, $K(\Gamma, \Lambda) = N(\Gamma, \Lambda) \times_{\widehat{\alpha}} G$ и ψ — соответствующее п. п. состояние на $K(\Gamma, \Lambda)$. Действие $\widehat{\alpha}$ на $N(\Gamma, \Lambda)$ задается следующим соотношением: $\widehat{\alpha}_{\bf g}(x \otimes y) = \alpha_{\bf g}(x) \otimes \alpha_{\bf g}(y), \ x \in N(\Lambda), \ y \in N(\Lambda')_{\widehat{\Phi}_{\Lambda'}}$, $\ g \in G$.

Теорема 2.3. 1. $K(\Gamma, \Lambda)$ — полный III_1 -фактор; 2. $SdK(\Gamma, \Lambda) = \Lambda$; 3. $K(\Gamma, \Lambda)_{\psi}$ — II_1 -фактор со счетной фундаменталь-

ной группой, содержащей Г.

Доказательство. Так как действие G на $N(\Gamma, \Lambda)$ эргодично и сохраняет п. п. состояние $\widetilde{\varphi}$, то по теореме $2.2~K(\Gamma, \Lambda)$ — полный фактор. Из построения следует, что $\operatorname{Spec}_p \Delta_{\circ} = \Lambda$, т. е. $\psi = \psi(\Gamma, \Lambda) - \Lambda$ — п. п. состояние. Далее, $\lambda_{\varepsilon} \in K(\Gamma, \Lambda)_{\circ(\Gamma, \Lambda)}$ н

$$\{\lambda_{\mathbf{g}}: \mathbf{g} \in G\}' \cap K(\Gamma, \Lambda) = \mathbf{C}. \tag{13}$$

Отсюда, $K(\Gamma, \Lambda)_{\psi}$ — Π_1 -фактор и, следовательно, $\operatorname{Sd} K(\Gamma, \Lambda) = \Lambda$ [5, теорема 4.1]. Из (13) и теоремы 1.1 вытекает счетность фундаментальной группы $K(\Gamma, \Lambda)_{\psi}$. Кроме того, $K(\Gamma, \Lambda)_{\psi(\Gamma, \Lambda)} \approx K(\Gamma)_{\psi_{\Gamma}}$, и в силу следствия 2.3[3] фундаментальная группа $K(\Gamma, \Lambda)_{\psi}$ содержит Γ .

Теорема 2.4. Пусть Γ_1 и Γ_2 — счетные плотные подгруппы R_+^* , содержащие Λ , $K(\Gamma_i, \Lambda)$ — полные Π_1 -факторы из теоремы 2.3. Если Γ_2 не содержится в фундаментальной группе $K(\Gamma_1, \Lambda)$

 Λ) $_{\Psi(\Gamma_1, \Lambda)}$, то факторы $K(\Gamma_1, \Lambda)$ и $K(\Gamma_2, \Lambda)$ неизоморфны.

Доказательство. Предположим, что K (Γ_1 , Λ) $\approx K$ (Γ_2 , Λ). Тогда факторы K (Γ_1 , Λ) \otimes B и K (Γ_2 , Λ) \otimes B изоморфны, где $B-I_{\infty}$ -фактор. Положим $\psi_t=\psi$ (Γ_t , Λ) \otimes tr. где tr — т. н. полуконечный след на B. Очевидно, что $\psi_t-\Lambda$ — п. п. веса на K (Γ_1 , Λ) \otimes B, причем ψ_1 (1) = ψ_2 (1) = + ∞ . Согласно теореме 4.7 (2) [5], $\psi_2=\alpha$ ψ_1 \circ Adu, $\alpha>0$, u — унитарный из K (Γ_1 , Λ) \otimes B. Следовательно, централизаторы весов ψ_1 и ψ_2 должны быть изоморфны. Но

$$(K(\Gamma_i, \Lambda) \otimes B)_{\psi_i} = K(\Gamma_i, \Lambda)_{\psi(\Gamma_i, \Lambda)} \otimes B,$$

и так как Γ_2 не содержится в фундаментальной группе $K(\Gamma_1, \Lambda)_{\psi(\Gamma_1, \Lambda)}$, то $K(\Gamma_1, \Lambda)_{\psi(\Gamma_1, \Lambda)} \otimes B$ не изоморфен $K(\Gamma_2, \Lambda)_{\psi(\Gamma_2, \Lambda)} \otimes B$ (см. [3, теорема 2.3]).

Следствие 2.5. Существует конпинуум неизоморфных полных факторов типа Π_1 с фиксированным инвариантом Sd

§ 4. Факторы типа Π_1 с различными группами внешних автоморфизмов. В данном параграфе приведены примеры *ICC*-групп H и Γ , групповые факторы которых имеют счетные фундаментальные группы, но Out R(H) не является локально компактной, а Out $R(\Gamma)$ — непрерывная локально компактная группа. Негомеоморфность групп внешних автоморфизмов факторов используется для построения двух траекторно неэквивалентных действий $SL(n, \mathbf{Z})$ на пространстве Лебега для каждого $n \geqslant 3$. Показано также, что $R(\Gamma)$ имеет неизоморфные тензорные степени.

Пусть N — полный II_1 -фактор с сепарабельным преддуалом. Тогда группа внешних автоморфизмов N — польская в индуцированной топологии (2), т. е. является полным сепарабельным метрическим пространством. В силу [2] группа внешних автоморфизмов фактора Конна счётна и дискретна, а значит локально компактна. Это свойство сохраняется при скрещенных произведениях.

Теорема 3.1. Если K действует внешними автоморфизмами на факторе Конна R(G), а $P = R(G) \times_{\alpha} K$, то Out P — локально компактная группа в топологии, индуцированной топологией (2).

До казательство. Пусть $\operatorname{Hom}(K, T)$ — группа характеров K. $\operatorname{Hom}(K, T)$ компактна в топологии поточечной сходимости на K. Обозначим через F подгруппу в $\operatorname{Aut} P$, алгебраически порожденную $\operatorname{Int} P$ и $\{ \overline{\mathfrak{o}}_v : v \in \operatorname{Hom}(K, T) \}$. Автоморфизмы \mathfrak{o}_{γ} задаются соотношениями: $\mathfrak{o}_{\gamma}(\pi(x)) = \pi(x), \, \mathfrak{o}_{\gamma}(\hat{\lambda}_k) = v(k) \, \lambda_k, \, x \in R(G), \, k \in K$. Очевидно, что множество $\{\mathfrak{o}_{\gamma}\}$ компактно в топологии (2). Отсюда, p(F)— компактно в $\operatorname{Out} P(p)$ — каноническая проекция на $\operatorname{Out} P$). Согласно лемме 7 [4] подгруппа F открыта, и поэтому однородное пространство $\operatorname{Aut} P/F$ дискретно и счетно. Группа $\operatorname{Out} P$ гомеоморфна $\operatorname{Aut} P/F \times p(F)$, и следовательно, локально компактна.

Приведем пример TICC-группы G, для которой Out R(G) бесконечна.

Пример 3.2. Рассмотрим диагональное действие SL(3, Z) на $Z^3 \oplus Z^3$, и пусть $G = SL(3, Z) \otimes (Z^3 \oplus Z^3)$ — полупрямое произведение. Тогда G - ICC-группа, и так же, как и в теореме 4.3 [6], можно доказать, что G обладает свойством T. C помощью отображения $i(g) = g \otimes 1$ вложим SL(3, Z) в SL(6, Z). При этом действие группы i(SL(3, Z)) на Z^6 и будет диагональным действием. C образом SL(3, Z) коммутируют матрицы вида $1 \otimes h$, $h \in SL(2, Z)$. Таким образом, действие SL(2, Z) на Z^6 поднимается до действия внешними автоморфизмами на G, а значит и на факторе Кенна R(G), T. e. Out $R(G) \supset SL(2, Z)$.

В качестве следствия I.2 и 3.1 получаем такой результат. Предложение 3.3. Пусть G-TICC-группа, на которой внешними автоморфизмами действует группа Z (например, группа, построенная в 3.2, где внешнее действие Z задается матрицами $\begin{pmatrix} 1 & n \\ 0 & 1 \end{pmatrix}$). Если $\Gamma = Z \, \mathbb{S} \, G$, то $R(\Gamma)$ имеет счетную фундаментальную группу и непрерывную локально компактную группу

внешних автоморфизмов, а поэтому Г не обладает свойством

Т и R(Г) не изоморфен фактору Конна.

Доказательство. Легко видеть, что $R(\Gamma)$ изоморфен $R(G) \times Z$ — скрещенному произведению R(G) на Z. Следовательно. на $R(\Gamma)$ действует двойственная группа автоморфизмс в $\{\theta_t\}_{t\in [0,2\pi]}: \theta_t(\pi(x)) = \pi(x), \; \hat{\sigma}_t(\hat{\kappa}_n) = e^{\pi i \hat{\kappa}_n} (x \in R(G), \; n \in Z), \; \text{т. е.}$ Оиt $R(\Gamma)$ — недискретная группа. Согласно 3.1 и 1,2, Оиt $R(\Gamma)$ — локально компактна и $R(\Gamma)$ имеет счетную фундаментальную группу.

Следствие 3.4. R (Г) имеет неизоморфные тензорные сте-

пени.

 \mathcal{L}_0 казательство. Так как $\Gamma = \mathbf{Z} \odot G$, то $\bigotimes_{n=1}^m R(\Gamma) \approx \mathbb{R} (G^m) \times \mathbf{Z}^m$. Но G^m обладает свойством T, и из доказательства теоремы 3.1 следует, что $\mathop{\rm Out} (\bigotimes_{n=1}^m R(\Gamma))$ гомеоморфна $X_m \times \mathop{\rm Hom} (\mathbf{Z}^m, T) = X_m \times T^m$, где X_m — дискретное пространство. Таким образом, при разных m группы $\mathop{\rm Out} (\bigotimes_{n=1}^m R(\Gamma))$ негомеоморфны и факторы $\bigotimes_{n=1}^m R(\Gamma) = R(\Gamma^m)$ неизоморфны.

Покажем теперь, что полный фактор типа II_1 может иметь и не локально компактную группу внешних автоморфизмов.

Пусть A — счетная коммутативная группа, α — действие группы G на A, G A — полупрямое произведение A на G, τ . е. группа упорядоченных пар (n, g) $(n \in A, g \in G)$ с умножением: $(n_1, g_1) \times (n_2, g_2) = (n_1 + \alpha_{g_1}(n_2), g_1g_2)$. Возникает дуальное действие $\hat{\alpha}$ на алгебре L^∞ (\hat{A}, v) , где A — группа характеров A, v — мера Хаара на \hat{A} : $\alpha_g(x)(s) = x(\hat{\alpha}_g(s))$, $\langle \alpha_g(s), n \rangle = \langle s, \alpha_g(n) \rangle$, $\langle x \in L^\infty(\hat{A}, v), s \in \hat{A} \rangle$.

Лемма 3.5. Алгебра Неймана $R(G \otimes A)$ регулярного представления группы $G \otimes A$ изоморфна $L^{\infty}(A, \mathbf{v}) \times_{\widetilde{\alpha}} G$ — скрещенному произведению $L^{\infty}(A, \mathbf{v})$ на G по отношению K действию $\widetilde{\alpha}$.

Доказательство достаточно стандартно и использует теорему

двойственности Понтрягина.

Для TICC-группы G положим $Z(G) = \bigoplus_{g \in G} Z$, α — действие G на

Z(G), порожденное левым сдвигом, $H = G \otimes Z(G)$.

Теорема 3.6. R(H) — полный фактор со счетной фундаментальной группой, но Out R(H) не локально компактна. H не обладает свойством T, R(H) не изоморфен фактору Конна и фактору из предложения 3.3.

Доказательство. Обозначим через S группу характеров Z(G). Из леммы 3.5 $R(H) \approx L^{\infty}(S, v) \times_{\widetilde{\alpha}} G$. Действие $\widetilde{\alpha}$ эргодично, и в силу следствия 1.3 R(H) — полный фактор со счет-

ной фундаментальной группой. Докажем, что группа $\operatorname{Out} R(H)$ не является локально компактной. Пусть о — автоморфизм окружности T, оставляющий меру Хаара квазиинвариантной. Рассмотрим автоморфизм r_{σ} пространства $S = \prod T$: $(r_{\sigma}s)(g) = \sigma(s(g))$,

 $(g \in G, s \in S)$. Он коммутирует с действием $\hat{\alpha}$ на S, и поэтому поднимается до автоморфизма $heta_\sigma$ скрещенного произведения $L^\infty imes$ \times $(S \ v)$ Ha $G: \theta_{\sigma}(\pi(x)) = \pi(\tilde{r}_{\sigma}(x)), \theta_{\sigma}(\lambda_{g}) = \lambda_{g} (x \in L^{\infty}(S, v),$ $g \in G$). Здесь $\pi(x)$ и λ_g — операторы, порождающие скрещенное произведение, $r_{\sigma}(x)(s) = x(r_{\sigma}^{-1}(s))$, $s \in S$. Если $\theta_{\sigma} = \operatorname{Ad} w$, то wкоммутирует с λ_g для всех $g \in G$. Следовательно, w = 1, т. е. тождественное преобразование. Мы приходим к заключению, что Out R(H) содержит группу автоморфизмов окружности, а значит не является локально компактной. В силу работы [2] группа H не обладает свойством T и R(H) не изоморфен фактору Конна.

Воспользуемся этой теоремсй для построения двух траекторно

неэквивалентных действия группы $SL(n, \mathbf{Z})$, $n \geqslant 3$.

Следствие 3.7. Естественное действие β группы $SL(n, \mathbf{Z})$ на п-мерном торе и действие SL(n, Z) левыми сдвигами на $S=\prod T$ где G=SL(n, Z), траекторно неэквивалентны при $n \geqslant 3$.

Доказательство. Действие в траекторно эквивалентно действию SL(n, Z) на T^m , порождающему естественное действие $SL(n, \mathbf{Z})$ на \mathbf{Z}^n . В силу леммы 3.5 $R(SL(n, \mathbf{Z}) \otimes \mathbf{Z}^n) \approx L^{\infty}(\mathbf{T}^n, \mathbf{Z})$ $v) \times_{\mathsf{B}} SL(n, \mathbf{Z})$. Так как $SL(n, \mathbf{Z}) \otimes \mathbf{Z}^n - T$ -группа, если $n \geqslant 3$ [6, 4.3], то группа внешних автоморфизмов фактора $L^{\infty}\left(T^{n}, \mathbf{v}\right) \times$ $\times_{8}SL(n, \mathbf{Z})$ дискретна и счетна (см. [2]). С другой стороны, можно показать, что автоморфизмы θ_{σ} фактора $L^{\infty}(S, \mu) \times_{\alpha} SL \times$ \times (*n*, **Z**) (см. доказательство теоремы 3.6) внешние, если $\sigma \neq id$. Таким образом, группа внешних автоморфизмов фактора $L^{\infty}(S,$ μ) $\times_{\alpha}SL(n, \mathbf{Z})$ не локально компактна. Следовательно, факторы, соответствующие действиям неизоморфны, и действия траекторно неэквивалентны.

Список литературы

1. Каждан Д. А. О связи дуального пространства группы со строением ее замкнутых подгрупп. — Функцион. анализ, 1967, № 1, вып. 1, с. 71—74.

2. Connes A. A factor of type II with countable fundamental group.—

J. Operator Th., 1980, 4, р. 151—153.

3. Голодец В. Я., Нессонов Н. И. Свободные группы, Т-свойство, II₁-факторы с различными счетными фундаментальными группами.— Докл. АН YCCP. Cep. A, 1983, № 8, c. 7—9. 4. Choda M. Crossed products and property T.— Math. Jap., 1981, 26, № 5,

D. 557 — 567. 5. Connes A. Almost periodic states and factors of type III1. - J. Funct. Anal. 1974, 16, p. 415 — 445.

6. Wang P. S. On isolated points in the dual spaces of locally compact groups.— Math. Ann., 1975, 218, p. 19 — 34.

Поступила в редколлегию 16.04.84.