Къ свѣдѣніямъ
о
SPHAEROBOLUS STELLATUS.

Ад. Питра.

Съ таблицею рисунковъ (X).
Известный в микологии грибок Sphaerobolus stellatus Tode интересен как по своему оригинальному строению, так и в особенности выбрасыванием своих спорангий. Но он изучен недостаточно; в особенности анатомическое его строение мало известно, и т. познан, которыми в этом отношении обязан микологи Корда и Бонордёу, содержать неточности и неправильности. Относительно механизма выбрасывания спорангий, можно сказать словами Де-Вари, что этот процесс оставался до сих пор совершенно непонятным. Поэтому я считаю не лишним описать мои наблюдения над этим грибком.

Sphaerobolus stellatus встречается в западной Европе довольно часто, как замечает Фрэш, Корда и др. В России он давно уже был находкой, как видно из сочинения Вейнмана: Hymeno- et Gastero-Mycetes. В окрестностях Харькова он, быть может, также не редок, но встречался ми ми всего четыре раза; проф. Черняев также собирал его в этой местности; недавно гг. Шверк и Рейнгард нашли его в окрестностях Эммана. Происходить ли такое, довольно редкое, нахождение его, и каждый раз в небольшом количестве, от небольшой величины грибка, почему он не бросается в глаза, или он действительно не принадлежит у нас к часто встречающимся грибам,— я не могу сказать определенно, т. е. болез, что не обращал на него до сих пор особенного внимания. У нас он до сих пор был постоянно находим на разрушающейся древесине ветвей, лежащих на земле, как в широколиственных лесах, так и в хвойных. Корда говорит, что он встречал их также на полотняных ветошках, кусках бумаги и проч.

Грибок этот сначала имеет вид небольшого шарика, закутанного в мицеллярную ткань; потом он увеличивается, мицеллярный слой делается более плотным,
поверхность грибка получает более определённости в очертания; достигая известной величины, он наконец разрывается при вершине своей, а потом выбрасывается заключавшийся в нем спорангиев (Fig. 1). Мы сначала рассматривали его в замкнутом состоянии, а потом — после разрыва и выбрасывания спорангиев.

Приближаясь, по развитии своему, к времени вскрывания, наш грибок, насколько я наблюдал его, имеет приблизительно шаровидную форму; Корда описывает его яйцевидным; Фриз говорит также о шаровидной форме; но это различие в описаниях не имеет большого значения: быть может попадаются и более или менее яйцевидные формы. По величине, в описаниях, его сравнивают обыкновенно с горичинным семенем, что подтверждается и на наших экземплярах, т. е. он бывает обыкновенной величины 1,5 мм в поперечнике. Цвет его блю-жёлтый; желтозна бывает различной интенсивности; к верхушке он обыкновенно желтее, к месту прикрепления более. Поверхность его не вполне гладкая, а представляет как бы разрывы или трещины поверхностной ткани.

Вырвавши тонкую продольную пластинку, т. е. от верхушки до основания, и рассмотрев ее под микроскопом, я нашел следующие слои ткани, начиная от периферии к центру (Fig. 2). Первый слой, довольно толстый, хотя неопределенной толщиной у различных экземпляров, состоит из длинных тонких гифенов, с очень тонкою стенкой, между которыми остаются огромные межклетные промежутки, почему он очень рыхл.; его можно назвать мицеллярным. При основании гриба этот слой пожирчив непосредственно на древесину ветки, и от него гифы входят в древесину. Интересно, что на поверхности гриба, даже на самой вершине его, я вердко находят части разорванной древесины, которая составляла его почву, как показывает мой рисунок (Fig. 2, 7). Элементы древесины не лежат притом свободно на его поверхности, а связаны с ним мицеллярными гифами, так что в препарате они остаются чётко соединенными. Это даёт мню понять предполагать, что, по крайней мере, в этих случаях грибок начал образоваться в мицелии, находящемся еще в древесине, разрушается сильно разрыхленной; в-последствии же, при возрастании, выносил на поверхности своей элементы древесины.— Второй слой состоит из фиббопоренхимных клеток различной формы и величины; стенки их тонки. При вершине грибка этот слой более толстый, чьм при основании; при вершине фиббопоренхима легко наблюдается, при основании она менее ясственна, что отчасти происходит от сжатия этого слоя, претерпевающего раз-
внешних частей гриба, отчасти, быть может, оттого, что в промежутки между псевдопищеводными, простираются также волокнистые ячейки. Этот, второй, слой гриба имеет гораздо более плотности, чем первый, микцеллярный; он же наиболее окрашен в желтый цвет, хотя и наружный, а также и внутренний, с-й и 4-й, более или менее имеют такое окрашивание. — Третий слой, жестко- или грубо-волокнистый, состоит из длинных гифенов, с толстыми стенками, которые сближены и перепутаны между собой, на-подобие войлока; при основании гриба он также значительно толще, сильно разбит, чем при верхушке; от него выходят, при основании, с внутренней его стороны, пучки гифенов, который проникает через следующий, 4-й, слой и соединяется со спорангцием, или спорангийем. — Четвертый слой состоит из клеток различной формы и величины. Между ними наименьшую часть слоя составляют характерным по положению и форме клетки, которые могут быть названы пилосадными (Fig. 5, a); они в весьма разные длинные своего покрышка и покрышки перпендикулярно, относительно предыдущего слоя, а также перпендикулярно, или лучеобразно, к спорангию, лежащему внутри четвертого слоя. Кроме длинных клеток, можно в этом слое еще различать короткие (Fig. 5, b), которые преимущественно лежат на внутренней его стороне, граничащей со спорангием; форма их различна. Между короткими и длинными существуют переходные формы. Концы клеток этого слоя, в-особенности длинных, обыкновенно заостренны и входят в промежутки других клеток. Стени клеток этого слоя толстые, так что приблизительно толщина их равняется всему покрышку гифенов 3-го слоя; но они, по-видимому, своды, студенистые, под микроскопом несколько блестячие, как бы похожи на стенки колленхимной ткани, почему весь 4-й слой может быть назван колленхимным. Этот слой, как и два предыдущих, в грибе, приближающийся к окрашиванию, при основании гораздо толще, чем при верхушке; через него, как уже сказано, проникает пучок волокон третьего слоя, соединяющийся со спорангием. Наконец замечу, что отдельные гифены 3-го слоя, на всей поверхности 4-го, как будто входят в него; эти слой, фиброзный и колленхимный, прочно и неразрывно между собой связаны. — Далее внутрь следует пятый слой, состоящий у ствяки спорангия; он имеет волокнистость; клетки его нитевидны, перепутаны между собой, очень толки в покрышке и имеют очень нежные стенки. Хорошо разсмотреть клетки этого слоя довольно трудно; он, по-видимому, прочь сростается между собой своим наружным поверхностями; впоследствии, при полном созревании спо-
рангія, овъ даже, сколько я могу замѣтить, сильнѣются въ одну однородную, почти стекловидную, кляйкую массу бурого цвѣта, которая составляетъ линкую оболочку зрѣлого спорангиума. Это расплываніе стѣнокъ имѣетъ незначительное значеніе, при отдѣленіи созрѣвающаго споранія отъ 4-го слоя, почему вносится въ спорангіи и можетъ быть свободно выброшенно изъ рибика, приближающагося къ вскрыванію, и замѣчать иногда, что самая поверхность наржена точкой полоска спорангіальной стѣнки имѣла уже розовое окрашиваніе, что указываетъ на начинающееся измѣненіе, которое оканчивается превращеніемъ ткани въ кляйкую, буро цвѣтъ, массу. Чтобы разсмотреть очертаніе клѣтокъ спорангіальной стѣнки, разумѣется, въ незрѣломъ еще ея состояніи, я принужденъ былъ употреблять ѣдкое кали или довольно крѣпкую соляную кислоту; но и при употребленіи этихъ веществъ отдѣлять клѣтки не легко, потому что пѣвиня стѣнки ихъ отчасти расплываемся во время разведенія. Однако, если положить препаратъ, напр., въ каплю соляной кислоты, покрыть его крѣпкимъ стекляннымъ стекломъ, во время разматыванія подъ микроскопомъ, произвести легкие удары плоской по крѣпкой пластинкѣ, то можно довольно хорошо замѣтить, что мѣстами волокна отдѣляются другъ отъ друга; при этомъ видно также, что въ содержимомъ клѣтокъ находятся капли блестящаго вещества, похожаго на масло. При первомъ взглядѣ на разрѣзъ этой ткани, иногда кажется, что она имѣетъ видъ очень мелкой паренхимы, но я убѣжился, что она волокнистая. Кажущаяся же ея паренхимность происходитъ или отъ того, что клѣтки ея очень перепутаны, слѣдовательно расходятся по всемъ направлениямъ, и плотно соединены между собой, или отчасти видъ этотъ происходитъ отъ блестящихъ каналовъ содержимаго; наконецъ, если препаровать хотя нѣсколько толще, а очень тонкій разрѣзъ этой мягкой ткани сдѣлать не легко, то, прижимая крѣпкую пластинку, полоска 5-го слоя ложится въ препаратѣ горизонтально, покрывает внутренній, споровый слой, который, просвѣчивающій, даетъ слой, въ этомъ случаѣ, видъ довольно крупной паренхимы. — Съ внутренней стороны, гифы спорангіальной стѣнки переходятъ въ ядро спорангіи или споровый, 6-й, слой; здѣсь же, на внутренней поверхности стѣнки, на базидіяхъ этихъ гифъ находятся уже споры, такъ-же, какъ, и въ главной массѣ ядра. — Ядро спорангіи, еще не зрѣлаго, въ разрѣзѣ, положенномъ въ кабыю подъ, хотя невсегда очень явственно, но несомнѣнно показываетъ подъ микроскопомъ распределеніе, слабо развитой, тѣсны и гименіальнаго слоя. Трама имѣетъ видъ полось, болѣе темная, соединенныхъ въ петли, охватывающія свѣтлымъ гізда, наполненный гименіемъ; болѣе
темный цвет его, сколько я мог заметить, происходит от того, что между гифами на них находится воздух, чего, по-видимому, не бывает в гифах гимен. Гифы трамы (Фиг. 6) длины, нитевидны, ветвятся; ветви их сплошь и сильно ветвятся; в особенности последние короткие веточки в огромном числе собираются в пучки или кисти, которые напоминают гименальные гнёзда. Всё ветви имеют тонкую стенку и мелкозернистое содержимое; самые тонкие из них похожи на гифы, из которых соткан стьаж спорангий. От напьых веточек отходят базидиальные клетки, имеющие форму овальную или удлиненную, и сидящие на более или менее длинных, иногда очень коротких, ножках; стьаж их очень тонки; сначала они наполнены протоплазмой, содержащей вакуоли, но потом, когда споры приближаются к созреванию, содержимое их делается совершенно прозрачным, водянистым. На верхушках базидий сидят споры в различном числе; большее число я нахожу более четырёх, от пяти до семи. Споры попадаются различной величины и формы, что зависит от их возраста: сначала они почти шаровидны, потом же, при выростании, делятся овальными и достигают значительной величины, так что бывают почти равными овальной части базидиальных клетки; споры на базидиях кажутся сидячими, или имеют очень короткую стеригмы; на длинных стеригмах их никогда не находил. При созревании, споры совершенно наполняются блестящим веществом, похожим на масло, но в спирт оно, по-видимому, не растворяется, отъ жидкого нали такое мало замечается. При созревании спорангий, мелкие ветки трам и базидиальные клетки распадаются. Наконец, в ядре спорангий может нередко попадались тела, напоминающие кристаллическую древеску, но при значительной плотности ткани, и не мог хорошо разсмотри их; отъ действия смолки шелк они делятся незаметными. (Трама, ветви ея, базидии и споры: Фиг. 6 — 9).
достаточной влажности почвы, на которой сидит грибок. Если производить в это время давление иглой на спорангий, то оказывается, что он не имеет твердой упругой поверхности, а уступает лёгко давлению, получая при этом впадины; спорангий представляется довольно мягким, почти тёстообразным тёмным. При таких давлениях оказывается также, что спорангий уже отделился, по-крайней-мёрт, от боковых стволов, т. е. от колленхиматого слоя; но разрушился ли уже в это время пучек волокон, который соединяет спорангий с 3-м слоем, я не мог видеть. В это время спорангий уже покрыт клейким веществом, о происхождении котораго мы говорили выше.

Дальнейшее измнение, происходящее с грибком, состоит в следующем. Внутренние слои урны при основании отрываются моментально и с некоторым треском от наружных, выворачиваются наружу, образуя жёмчужки или колпачки, выбрасывающие спорангии, но оставляя зубцами своими в соединении с зубцами наружных слоев урны (Fig. 1, c). Колпачок представляет в виду бесцветной, прозрачной, упругой кожицы, которая, по-видимому, с значительною силой выворачивается и выбрасывает спорангий (Fig. 1, 8), потому что последний отлетает иногда на несколько дюймов от грибка, прикрепляясь своей линзкою поверхностью к какому-нибудь предмету. Впрочем, сила выбрасывания не во всех случаях бывает одинакова, что, разумеется, зависит от различных условий: иногда спорангий остается даже на колпачке, не отлетает, если выворачивание последнего происходит медленно или с недостаточной энергией. Но нам известно, что спорангий, при основании грибка, находился в соединении с 3-м слоем (Fig. 2) посредством пучка волокон; этот пучек или разрушается еще в то время, когда спорангий отделяется от колленхиматого слоя, или он разрывается во время быстрого выворачивания колпачка. И так, послё выбрасывания спорангий, грибок имеет следующий вид (Fig. 1, c): наружные слои урны оставляются на своем месте, зубцы их связаны зубцами колпачка, который покрыт подъ урной; но такъ-жея колпачок выворотился, то наружная сторона его, сладковато, прежде составляла внутреннюю поверхность урны; внутренняя же — прежде прилегала и находилась въ связи съ наружными слоями урны.

Было мы описывали слои грибка, когда онъ еще не сжимался, теперь несмотря — какимъ изъ описанныхъ слоевъ соответствует кожистый колпачокъ и оставляется въ прежнемъ положении наружная часть урны. Это сливение имѣетъ существенное значение, во-первыхъ, потому, что будетъ служить для объясненья механизма выбрасывания.
спorangиї, а во-вторых для того, чтобы показать неправильность прежних анатомических описаний нашего грибка. Если приготовить поперечный разрез кожистаго колпачка и рассмотреть его под микроскопом (Fig. 5), то тотчас же оказывается несомненным, что колпачек состоит целиком из двух выше описанных слоев: 3-го и 4-го, т. е. волокнистаго и колленхиматаго; внутренняя, вогнутая поверхность колпачка соединена с грубо-волокнистаго 3-го слоя (Fig. 5. c.), над ним возвышаются наложенные клетки 4-го слоя (a), а наружную, выпуклую поверхность колпачка устилают короткія клетки того же слоя (b). Зная при том, что колпачек, отрываясь от наружных слоев урны, вворачивается, становится ясным, что именно такое размѣщеніе ткани в колпачкѣ необходимо должно быть. Приготовивши поэтому разрѣз изъ оставшейся на мѣстѣ, наружной, части урны, оказывается, что она состоит изъ слоев — 1-го и 2-го, т. е. мицелиального и псевдогренхиматаго. Наконецъ разрѣз изъ выброшенаго sporangиї показываетъ только яйцевидный бурый наружный слой, заключающий вънутрь ядро, который можетъ слѣдовательно получить происхожденіе только изъ 5-го слоя замкнутаго грибка. И такъ, при вскрытии грибка, разрываются на-верху зубцами четыре наружныхъ слоя; потомъ 3-й и 4-й вмѣстѣ, отрывались отъ 2-го, вворачиваются и образуютъ колпачекъ, а 1-й и 2-й остаются на своемъ мѣстѣ.

Чтобы привести наше описание сколько-нибудь въ соотношеніе съ наблюдениями Корды и Вонордена, сдѣлаемъ о нихъ нѣсколько замѣчаній. Корда¹ описываетъ особенный покровъ (Schleier, Fig. 6, c) съ нижней стороны гриба, дѣлающій его приближительно до половины: «man sieht das untere schmaler Ende von den Resten des Schleiers umgeben, welche eine zarte weisse flaumige Schicht bilden, und als Fasern des Wurzelgeflechtes die Umgebung durchweben und berieiben» Vororderne² говоритъ: «Der Uterus dieses Pilzes ist bald halb in den Mutterboden (morschens Holz) eingesenkt, bald frei, an der Basis mit gelben wolligen Faden umgeben, welche das hier zum Theil freie Mycelium sind». Объ этихъ описаніяхъ я не имѣю точаго сужденія, потому что слѣдующая за тѣмъ описанія строенія грибка недостаточны. Если говорить объ особенномъ, болѣе или менѣе опредѣленно ограниченномъ, мицеліальному слоѣ, одаивающемъ грибокъ, промѣ того мицелія, который распространяется совершенно неопредѣленно въ почвѣ грибка, какъ это, по-видимому, вытекаетъ изъ описанія

¹ Corda, Icones fungorum etc. 1842. Tom. V, pag. 66. Tab. VI. 48.
² Bonorden. Botanische Zeitung. 1851. Seite 22. Tabl. I. Fig. 12.
Корды, то, обозначенный имъ буквою е, слой описать неправильно: онъ обложает грибокъ со всѣхъ сторонъ, какъ описаный мною — первый слой. Если же мой первый слой не считать микелизированным, то слой e Корды не существуетъ, и микелиз получить приблизительно такое обозначение, какъ выражено словами Вопордена, если только Вопордень не принимаетъ на всей поверхности грибка особенного микелизированного слоя. Далѣе, о строении Sphaerobolus, Корда говоритъ слѣдующее: (Fig. 6). «Das aussere Peridium (a) umschliesst das innere (b), und beide sind fleischig. Im zweiten Peridium liegt die Sporangie (c). Бромъ того на рисункѣ 6-мъ Корды, между a и b, проведена еще довольно широкая темная полоса, о которой онъ ничего не говоритъ. Это описание очень недостаточно и неопределенно; слово fleischig почти ничего не обозначаетъ, размѣръ только, что Корда считаетъ объ перидий, или каждый въ-отдѣльности однородный по строению, что не подтверждается данными наблюдениями; притомъ грубь волокнистыя слой моего описанія, который входитъ въ составъ внутренняго перидиа Корды, никакъ уже не можетъ быть названъ мясистымъ. Вопордень о томъ-же замѣчаетъ слѣдующее: «Der Uterus besteht aus zwei Hütten, die erstere ist dick und locker, die innere zart, dicht und elastisch, beide bestehen aus nicht zerfferten innig verwobenen Hyphen». И такъ, здѣсь также принимается однородность строения каждои изъ кожицы, притомъ весь uterus описывается состоящимъ изъ волокнистой ткани; послѣднее неправильно, относительно, мною названного, псевдохаренимина слоя. Наружная кожица описанія Вопордена, вѣроятно, соответствуетъ первому слою моего описанія, или 1-му и 2-му вѣчес; внутренняя же кожица — или двумъ слоямъ 2-му и 3-му, или же одному 3-му слою. Это несомнѣнно моего описанія съ показаніями обоихъ авторовъ отчасти происходитъ оттъ того, что они оба относили колленхимную ткань коллаха къ спорангію, какъ это ясно выразится въ слѣдующемъ. Корда говоритъ: «Fertigt man von der Sporangie einen Durchschnitt, so sieht man, dass sie aus zwei Hütten (Fig. 7, s. a, a.) besteht, deren aussere (a) aus radial gestellten, grossen, hellen Zellen gebildet wird. Die zweite Schicht (Fig. 7, s. b, b.) ist schmaler als die aussere, bestehet, aus sehr kleinen verfilzten Zellen». Вопордень говоритъ: «Die Sporangie besteht aus zwei Logen von Zellen, die erstere bildet die Kapsel (Fig. 12, c.), die letztere die Basis (Fig. 12, d.) der Fäden, von welchen die Sporen entspringen. Die Zellen der Kapsel sind lânglich etc., sie liegen mit ihrem Längsdurchmesser in der Radiation der Kugel». И такъ, оба автора принимаютъ два слоя стѣнки спорангіума, изъ которыя наружный будто-бы состоитъ изъ длинныхъ, перпендикулярно поставленныхъ
клеток. Но я положительно могу утверждать, что оба они находятся, в этом отношении, в заблуждении; и хотя Корда говорит, что они описывают разрыв спорангия, но я увидел, что как он, так и Вопордень заключали о строении стенки спорангия только по разрыву цильника, не вскрывая его еще грибка, относя ошибочно длинные клетки (Корда: Fig. 7, S. a, a, Вопордень: Fig. 12, c) к спорангиям, между тем как эти клетки (моей рисунок: Fig. 5, a) составляют всегда принадлежность колпачка и никогда не находятся на отделяющемся спорангии. Если бы они делили разрыв колпачка, после выбрасывания спорангии, то они несомненно нашли бы в нем эту характерную ткань длинных палисадных клеток. Разрыв отделяющегося уже спорангия даже не мог дать таких препаратов, как представляют рисунки Корды и Вопордена, потому что спорангий в это время уже покрыт бурыми клейким веществом, за которым внутрь следует споровый слой, а наружу пять никаких клеток. Волокна (e) фигуры 7-й Корды не в каком случае не могут быть трубками прорастающих спор, как между прочим, предполагает Корда; они составляют обрывки 3-го, волокнистого слоя, который переходит в коллекционный слой. Внутренний спорангийный слой Корды (Fig. 7, S. b, b) соответствует, по всему впрочем, 5-му слою, и есть настоящая стеника спорангии. Клетки d фигуры 12-й Вопордена, быть может, также соответствуют 5-му слою, но непроницаем, от чего они вныли такими большими, или они соответствуют, хотя отчасти, коротким клеткам 4-го слоя. Далее, следующее описание Вопордена я еще меньше понимаю: "Вон из Zellen der inneren Lage entspringen mit rundlichen artculirten Enden dicke astige Zellen (Fig. 12, d), welche an den Enden ihrer Aeste kleine runde Zellen tragen, die von seinen Segmenten und mit Wasser benetzt nicht abfallen und die Sporen zu sein scheinen, es aber nicht sind, sondern sich später verlängern und in die (Fig. 12, b, b) dargestellten Aeste verwandeln. Aus den erweiterten Enden oder Basidien treten 4 bis 6 ovale Sporen (Fig. 12, c) gestielt hervor". Толстые клетки на внутренней стороне спорангийной стенки я не находил, хотя о толщине клеток, без измельчения их, нельзя говорить определенно. Корда, к сожалению, дает более правильное замечание о клетках, выходящих из стенки спорангии: "Aus ihr entspringen die Fäden, welche die Sperrenmasse durchweben und gleichsam die Stelle des Haargeflechtes vertreten". До сих пор; действительно же прибавление Корды: als sporenerzeugende Organe aber eigentliche Basidien sind — должно исправить, потому что только на этих ветвях или их развитиих развиваются настоящие басидии, кото-
рых Корда не видел. Далее, я не знаю, о каких круглых клетках говорил Вопорден, похожих на споры, которых, смоченных водою, легко отделяют, из ко-торых, будто бы, потом выростают ветви, расширяющиеся в базиди; они не упо-минает при этом подробнее, каким образом он убедился о выростании базидиальных ветвей из круглых клеток. Я нахожу в спорангиях только настоящих споры, действительно легко отделяющихся, которые бывают, при различном возрасте, различной формы и величины: сначала они малы и шаровидны, а потом увеличиваются и делятся овальными. Потом, длины их скрепляют споры (Bonorden. Fig. 12. 6) тоже не бывает; споры на базидиях я находил всегда сидячими или на очень коротких ножках. Впрочем, я другом сочинении Вопордена, того же года, говорит о "ungestielte Sporen", но ми неизвестно — поправка ли это? В этом отношении я должен упомянуть о рисунке базидий со спорами Теллера, которые очень похожи на та-же органы, видимые мною. Наконец, Корда упоминает о проростании спор в спорангиях, последующем его из гриба; рисунок его (Fig. 13) показывает, что споры при этом заключаются в форму, как будто бы, высаживаются в межи различных видов. При тых же условиях, я также находил в спорангиях проростающие споры, но ничего особенного в них не замечал: из грибов, удерживавших приблизительно свою форму, выходила одна или две трубки — из одного или из обоих концов (Fig. 11).

Перейдем к рассмотрению некоторых наблюдений, относящихся к вскрыванию грибов и вскрыванию спорангия. Все, до сих пор известное, в этом отношении, может быть выражено следующим образом: когда грибок содержит достаточно влаги, то он вскрывается на верху, и на дне чашечки его лежит спорангий; если же количество влаги, вследствие испарения, уменьшается, напр. — в сухую погоду, то спорангий вскрывается. На первый взгляд последнее явление кажется странным; можно бы ожидать, что спорангий, иначе, противоположное; в самом деле: если влага, положим, содействует вскрыванию гриба, то высыхание его, должно бы, по-видимому, произвести снова закрывание его, как это замечается у тых-то других грибов.

Грибы, вмешавшись с почвой, были мои споры положены в грибы, вскрывшиеся в грибы, гдели воздухе содержались влаги; на другой — третьей день вскрывались, а потом, в капсулу же, выбрасили спорангии. Чтобы со-

2 Tulasiw, Fungi hypogei. Tabl. XXI. fig. 11.
держать грибки еще в более влажной среде, я налил в глубокую тарелку воду, положил в нее несколько мху, а на последнем разместили грибки, с их почей, потому все это закрыть другой тарелкой. В следующие два дня грибки вскрылись и выпускали свои споры; последние произошло в порядке даже с некоторой силой, потому что споры отлетали довольно далеко и прилеплялись к верхней тарелке. При этом окружающая грибок среда содержалась очень влажно: мх и почва грибка были мокры, всюду осаждалась роса, в урнках грибов был отсылая также капелька воды. И так, грибок наш в очень влажном состоянии выбрасывает спорангию; высыхание его, следовательно, не есть необходимое условие происхождения этого процесса; однако я должен заметить, что, при этих условиях, грибок, по-видимому, может долго оставаться в раскрытом состоянии, прежде чем выбрасывается спорангий. — Чтобы, кроме того, иметь понятие о действии на него высихания, я отдалил расскрывшийся грибок, с небольшим количеством его почек, и, положив его на стеклянную пластинку, оставил в таком положении при обыкновенной комнатной температуре; но не прошло и 10 минут, как я увидел уже третий отъем выбрасывания спорангия. Из всего, в связи с известными наблюдениями, я заключаю, что высыхание действительно способствует выбрасыванию спорангия, ускоряет процесс, хотя не есть необходимое условие. — Некоторые вскрывшиеся грибки были положены в алкоголь, с целью их сохранения, но на следующий день оказалось, что их кожистая мешечка вскоре высыхают из урны и выпадают спорангий, который оставался на ней прикрепленным; процесс видимо происходил с малой энергией. — Наконец, следующие наблюдения покажут, что и механическое давление способствует выбрасыванию спорангий. Желая отдалить расскрывшийся грибок от его почек, я вводил иглу под основание его; при этом каждый раз мгновенно происходило выбрасывание спорангия. Далее, в раскрывшемся грибке, в той части, которую можно назвать шейкой, т. е., где трубка урны переходит в зубцы, не редко внутренние слои бывают уже отделяют от наружных, между тем как в основной части грибка в зубцах они еще соединены между собой. Пользуясь этим, не трудно, при помощи иглы, препарировать осторожно, отделять зубцы внутренних слоев от зубцов наружных; но стоит только начать отделение этих слоев в основной части грибка, как он мгновенно вспыхивает спорангий, при чем, разумеется, выпарывается колпачок. Основная часть зрелого грибка, по-видимому, обладает значительной чувствительностью, так-что, не желая произвести выбрасывания спорангий,
не свдлется к ней жестко прикасаться. Описанные наблюдения были произведены много впоследствии разъ, и всегда с одинаковым результатом; при этом грибок был совершенно влажен, почва, на которой он находился, мокрая, а высыханием его во время наблюдения не может быть и речи. Из этого и доказу заключение, что, когда грибок уже вскрыть и спорангий лежат в урине, ткани последней находятся в каком-то напряженном состоянии, которому достаточно, хотя сколько-нибудь, содействовать механически, чтобы произвести взрыв.

Чтобы понять значение описанных наблюдений, рассмотрим въ некоторых свойства колпачка, который видимо играет роль при выбрасывании спорангий. Если отдѣлить его отъ грибка, послѣ выбрасывания спорангий, то край его отверстія припадает другъ къ другу, такъ-что отверстіе больше или менѣе закрывается; если положить его въ воду, то закрываніе происходить еще съ большою энергіей; напопаче въ глицеринѣ отверстіе его дѣлается шире: сладовательно, поглощеніе воды и удаление ее производятъ схватываніе отверстія или раскрываніе его. Помощью препарации звоихъ шляпъ я дѣлать потомъ попытки обратно выворачивать колпачекъ, т. е. привести его снова въ то положеніе, какое оно имѣлъ въ уринѣ, до выбрасыванія спорангій, но оказалось, что этого дѣлать нельзя: упругій колпачекъ, не только въ водѣ, но даже въ глицеринѣ, при этомъ, скорѣе разрывается, но никакъ не выворачивается. При этомъ еще замѣчательно, что въ каждомъ разрывѣ, произведенномъ языкомъ, край его заворачиваются внутрь. Все это наводить на мысль и убѣждаетъ въ томъ, что между тканью внѣкной поверхности колпачка и тканью, изъ которой содрана вогнутая его сторона, существуетъ антагонизмъ. Но намъ известно уже, что вынутою сторону колпачка занимаетъ колленхимный слой, а вогнутую—грубо-волокнистый; сладовательно клѣтки перваго имѣю стремленіе расширяться, занять больше мѣста, а послѣдняя удерживаетъ ихъ отъ этого: колленхимный въ колленхимномъ слое, такъ сказать, находятся въ активномъ и пассивномъ напряженіяхъ. Но такъ-же колленхимныя клѣтки, по всему вѣроятію, поглощаютъ и удерживаютъ воду съ большою силой, чѣмъ волокнистыя, то этимъ объясняется, почему отъ дѣйствія воды и глицерина отверстіе колпачка дѣлается уже и шире. Мы однако говорили, что даже въ глицеринѣ выбрасываніе вѣнка не удаются, сладовательно большее или меньшее количество воды въ обоихъ слояхъ не есть единственная и главная причина выбрасыванія спорангій, а ее вѣроятно надо искать въ томъ, что клѣтки колленхиммаго слоя, но величинѣ своей, должны бы занимать большее пространство, чѣмъ позволяетъ волокнистый слой.
Зная описанныя свойства коллииная, обратим внимание на возрастание колленхиматогена, активного слоя. Разрезы невскрытных грибов, но приближающихся к взрослому состоянию, действительно дают понятие о быстром возрастании элементов 4-го слоя. 1) Некоторые из разрезов содержали 4-й слой, которого толщина, при основании грибка, покрывала приблизительно 12 делений окулярного микрометра; при верхушке слой был несколько тоньше. Самые длинные клетки его основания покрывали приблизительно 6 делений, почернели их до 3-х или 4-х делений, стебли тонкіе, но очертание клетки паренхиматозным, но замечается небольшая прижатость друг к другу; клетки верхушки этого слоя округлые, почти шаровидны приблизительно 4-х делений почернели. 2) Другие разрезы представляли 4-й слой, при основании грибка, покрывающий 35 делений и более, при верхушке — до 20 делений; углущенная часть основания переходит в более тонкую верхушку таким образом, что по боковым частям приблизительно удерживаются, и только в верхней части заметно уменьшается. Самые длинные клетки основания покрывали более 20 делений, почернели их до 4-х делений, стебли толстые; вся ткань кажется иметь вид значительной смелости, клетки имеют концы большему большему заостренные, входящие в промежутки между другими клетками; ячейки верхушки этого слоя оставались округлёнными, малые угловатыми, до 6-ти делений длинной и до 5-ти делений почернели. 3) Наконец, для сравнения, возьмем разрезы из того же слоя в коллииинах, постепенно изображая спорангии: весь колленхиматогенный слой покрывал до 40 делений, самые длинные клетки до 25 делений, почернели их до 5 делений, стебли толстые.

Из приведенных здесь наблюдений и сравнительных измерений я вынужен заключить, во-первых, относительно вскрывания грибка, и во-вторых, относительно выращивания спорангии.

Во вторых разрезах 4-й слой в основной части своего протяжения в три раза толще, чем в первых разрезах; во вторых — толщина его вдвое больше, чем при верхушке; длина палисадных клеток, сравнивая первые разрезы со вторыми, увеличивается приблизительно в четыре раза; притом там, при верхушке слоя, клетки его остаются короткими и с тонкими стенками. Из этого, я думаю, можно заключить, что 4-й слой, быстро углажаясь, растягивается 3-й слой и производит

1 Каждое деление равняется 0,0028 мм.
давление на спорангий; но так как это утолщение и давление происходят преимущественно при основании, то спорангий, в свою очередь, должен производить давление на верхней части грибка и содействовать таким образом вскрыванию его.

Далее, из приведенных размёров клеток 4-го слоя видно, что хотя поперечник их сравнительно гораздо меньше изменяется, но все-таки увеличивается, именно, в нижних частях грибка, приблизительно от поперечника 3-хъ дйленій до 4-хъ, или от 4-хъ до 5-ти (в разрѣзахъ клопачка), что в общей массѣ слоя должно произвести взаимное прижатіе клетокъ съ боковъ; послѣднее, по всему вѣроятію, еще увеличивается тѣмъ, что большинство неисцѣленныхъ клѣтокъ, сильно удилины, простасть концами своими въ промежутки между другими клѣтками. Кроме того, стѣнки клѣтокъ этого слоя, въ послѣднее время развитія, сильно утолщаются, и потому сильно могуъ противодѣйствовать взаимному давлению; наконецъ, колленхимная ткань, вѣроятно способна поглощать значительное количество воды. Что боковое сжатіе клѣтокъ 4-го слоя, при окончательномъ его развитіи, постепенно увеличивается, видно подъ микроскопомъ; клѣтки какъ-будто налегаютъ даже боками одна на другую, чѣмъ затрудняется микрометрическое измѣрение ихъ поперечника. Изъ всего этого я заключаю, что, кроме растягиванія волокнистаго слоя колленхимныхъ, происходящаго, какъ выше сказано, отъ удилиненія неисцѣленныхъ клѣтокъ, то же вѣроятно еще въ большей степени достигается боковымъ развитіемъ элементовъ колленхимаго слоя, ихъ взаимнымъ прижатіемъ. Отъ этого колленхимный слой долженъ дѣлаться болѣе объемистымъ, стремиться занять большее пространство, но удерживается въ этомъ волокнистымъ слоемъ. Наконецъ напряженіе между ними доходить до крайняго предѣла, при которомъ активное дѣйствие 4-го слоя на-столько значительное, что удерживаемаго сжатія 3-го слоя и связан послѣдняго со вторымъ, что наконецъ 3-й отрывается отъ 2-го и колечекъ, быстро выворачиваясь, выбрасывается спорангій.

Признаваемъ теперь наши заключенія къ наблюденіямъ, описаннымъ выше; мы увидимъ, что они находятся между собою въ согласіи. Намъ известно, что во влажной средѣ спорангій выбрасывается, безъ высыханія грибка; это объясняется постепеннымъ развитіемъ грибка, преимущественными возрастаніемъ колленхимаго слоя и поглощеніемъ влаги, постепеннымъ увеличеніемъ антагонизма между 3-мъ и 4-мъ слоями, которое окачивается всѣрдовымъ. Кроме того мы знаемъ изъ описаній другихъ авторовъ, что высыханіе грибка содѣйствуетъ выбрасыванію спорангія; мое наблюдение надъ раскрытъмъ грибкомъ, положеннымъ на стеклянную пластинку, также показывало, что если грибокъ подсохнеть,
то процесс, по-видимому, ускоряется. Это также легко объясняется: при подсыхании грибка, колленцимный слой сильно удерживает влагу, чьим волокнитым и наружные слои, которых влажны имеют тонкую структуру; поэтому прежде всего должен подвергаться высыханию первый слой, за-тем 2-й и 3-й; вследствие этого 3-й слой должен сжиматься, вызывающее его напряжение увеличивается и антагонизм его с 4-й слоёвательно тоже, что, разумеется, должно ускорить процесс выбрасывания спорангий. Описанное выше действие алкоголя на грибок тоже находится в согласии с нашим объяснением. Алькоголь в больших степенях поглощает влагу у первых трех слоев, чьим у четвертого, поэтому выворачивание колпачка происходит; но он отмачивает воду впролет и у четвертого слоя, поэтому, быть может, процесс происходит здесь с меньшей энергией. Далее, нам известно, что если подводить иглу под основную часть раскрытого грибка, то спорангий мгновенно эксколидирует. При этом вводимая игла соединяется давлением, или стягивающей способности 3-го слоя на 4-й, и сладовательно обратно — 4-го на 3-й, при чем, значит, антагонизм между ними увеличивается и процесс выбрасывания спорангий ускоряется. Наконец, другой способ механического соединения этому процессу также понятен. Отделившие иглами зубцы внутренних слоев от наружных и продолжая отделять их основных частей, уменьшается связь между 2-м и 3-м слоями, сладовательно активному действию 4-го слоя остается меньше противодействия, и поэтому процесс выбрасывания спорангий ускоряется.

Окончив описание наблюдений над Sphaerobolus stellatus, насколько небольшой запас, находившийся в моем распоряжении, материала мне позволил сделать, я согласую еще несколько слов относительно средства его с другими гастеромицетами. Известно, что Sphaeroboles относится к небольшой группе Carphoboli; далее, вообще принято, что Carphoboli имеют близкое сходство с индироядами. Однако некоторые авторы, по-видимому, замешали также его средство с гастромицетами; так, Кордом помещает гастромицеты между индироядами и Carphoboli; Рабенгоршт хотя относит гастромицеты к Trichomycetes и Trichogasteres, a Carphoboli к Angiogastores, однако род Geraster у него поставлен последним из Trichogasteres, a Sphaerobolus — первым из Angiogastores, таким образом оба рода приближены друг к другу. На основании описаных мною наблюдений, я нахожу значительное сходство между этими двуми родами. В самом деле, известно, что в нижней части гастромицет состоит из небольших слоев, которые не в собст. виды получают одинаковую степень развития. Наружные два слоя гастромицеты сравнительно с двуми наружными слоями у Sphaerobolus; белый
волоснистый слой гаестров, получающийся сильно развивающийся в основной части гриба и переходящий в ножку, поддерживающую внутренний период, и связанный с 3-м слоем Sphaerobolus, который также-же волоснистый, всего более развивается в основной части, даёт от себя лучев волокон, проникающих через 4-й слой и соединяющихся со спорангиями; далее, колленхимный слой гаестров, служащий для разрывания вишишего периода, ясно соответствует колленхимному слою Sphaerobolus; потому, так называемый разрывный слой гаестров не имеет, по-видимому, и у этого рода определённого очертания, а принадлежит, вероятно, к наружному слою внутреннего периода — у Sphaerobolus наружные слои клеток нитевидного слоя, или спорангимальной стенки, расправляющиеся и разрываемые, при отдельении спорангий от 4-го слоя, соответствуют разрывному слою; наконец, спорангимальная стенка у Sphaerobolus соответствует внутреннему периоду гаестров. Пойдем в нашем сравнении еще дальше. У гаестров колленхимный слой разрывается наружным периодом звездообразно; то же делает соответствующий слой у Sphaerobolus, только здесь образуются маленькие зубцы, вместо лучей звезды. Кроме того, у Geaster fornicans, как известно, два внутренних слоя — волоснистый и колленхимный, потому открываются от двух наружных; послёдние образуют, оставляя на земле чашку, а первые значительно выворачиваются, поднимая внутренний период вверх и оставляя лучами свои в связи с лучами чашки. Почти также мы находим у Sphaerobolus: внутренние слои — волоснистый и колленхимный, открываются от двух наружных, выворачиваются сильно, чьё у G. fornicans, но остаются зубцами своими в связи с зубцами наружных слоев урны. Следовательно, разница состоит только в большем или меньшем развитии соответствующих частей или процессов: так, у Geaster отворачивание лучей вишняго периода сравнительно медленное, сильная колленхимного слоя зависит только или главным образом от по- глощения воды; у Sphaerobolus, кроме этой причины, играют еще роль других причин; анагонизм здесь выражается также сильно, что коллачек мгновенно отрывается. Кроме того, у гаестров ножка, поддерживающая внутренний период, большие или меньше толстая, твердая, оставшаяся; у Sphaerobolus, соответствующий ей лучев волокон очень тонкий, который или расправляется, при созревании грибка, или разрывается, во время быстрого выворачивания коллачка. Приближая род Sphaerobolus к роду Geaster, на основании их строения, и терминологии частей нашего грибка основательно может быть изъяснена, чтобы приминуть её к общей терминологии: Sphaerobolus в таком случае будет иметь наружный и внутренний периоды, последний замещая спорангий.
ОБЪЯСНЕНИЕ РИСУНКОВЪ.

Табл. X.

Фиг. 1. Sphaerobolus stellatus въ различныхъ стадияхъ развитія: a не вскрывшійся и b открытый грибокъ, заключающій еще спорангіи; c послѣ выбрасыванія спорангія — s, колпачекъ соединенный зубцами съ остающейся частью урны.

Фиг. 2. Продольный разрѣзъ молодаго грибка: x сосуды древесины изъ почвы грибка, связанные съ микеліальнымъ слоемъ.

Фиг. 3. Гифены изъ первого слоя грибка.

Фиг. 4. Псевдопиаренхима изъ верхней части втораго слоя.

Фиг. 5. Поперечный разрѣзъ колпачка, послѣ выбрасыванія спорангіи: a и b пахисадния и короткія клѣтки четвертаго слоя; c грубоволокнистый третій слой; s спорангій, который прежде былъ окруженъ короткими клѣтками b. (Чертежъ не вполнѣ удовлетворительный въ томъ отношении, что въ тканяхъ a не ясно выражена зоострѣнія концовъ клѣтокъ).

Фиг. 6. Гифены трамы съ вѣтвлениемі; одна базидія съ пятью молодыми малыми спорами; три молоды базидіальныя клѣтки.

Фиг. 7. Гифены съ двумя базидіальными клѣтками.

Фиг. 8. Гифены съ двумя базидіями, на которыхъ сидять взрослыя споры. Точки въ полости гифена должны выражать маслобразныя капли.

Фиг. 9. Базидіальная клѣтка съ чрезвычайно короткими стеригмами, отъ которыхъ оторваны споры.

Фиг. 10. Вѣтвистый гифенъ изъ пятаго слоя.

Фиг. 11. Проростающая спора.