Ю. И. Любиц, д-р. физ.-мат. наук

ОБ ОДНОМ КЛАССЕ КВАДРАТИЧНЫХ ОТОБРАЖЕНИЙ

Настоящая заметка примыкает к статье [1] и посвящена квадратичным отображениям n-мерного вещественного пространства \mathbb{R}^n в себя,

$$V : x' = \sum_{k=1}^{n} a_{ik} x_i x_k \ (1 \leq j \leq n),$$

сохраняющим гиперплоскость

$$\langle x \rangle \equiv \sum_{i}^{n} x_i = 1$$

и удовлетворяющим в этой гиперплоскости условию $V^2 = V$.
Для этого класса отображений в [1] была получена следующая квазитреугольная форма:

\[s' = s^2, \]
\[u' = su + B(u, v) + Kv, \]
\[v' = Qu, \]

где \(u, v \) — многомерные, вообще говоря*, координатные блоки, дополняющие линейную форму \(s \) до системы координат в \(\mathbb{R}^n \);
\(K, Q \) — квадратичные отображения; \(B \) — билинейное отображение, причем

\[KQu = 0, \quad B(u, Qu) = 0, \quad B(Kv, Qu) = 0, \quad B(B(u, v), Qu) = 0 \]

и

\[\hat{Q}(u, Kv) = 0, \quad \hat{Q}(u, B(u, v)) = 0, \quad Q(B(u, v)) = 0; \]

где \(\hat{Q} \) — поляра отображения \(Q \).

Далее, в [1, 2] было доказано, что размерности блоков \(u, v \) инвариантны относительно способа приведения к квазитреугольному виду, что позволяет назвать пару чисел \((m, \delta)\), где \(m = \dim u + 1, \delta = \dim v = n - m \), топом отображения \(V \).

Линейная форма \(f \) называется инвариантной (для отображения \(V \)), если \(f(Vx) = s(x)f(x) \) (т.е. \(f(Vx) = f(x) \) при \(s(x) = 1 \)). Инвариантные линейные формы образуют подпространство \(I_V \), размерность которого не превосходит \(m \), ибо, как нетрудно доказать (см. [1]), инвариантные линейные формы не зависят от \(v \). Если \(\dim I_V = m \), то отображение \(V \) называется правильным. В этом и только в этом случае \(K = 0, B = 0 \) (независимо от способа приведения к квазитреугольному виду). Правильные отображения представляют особый интерес в связи с их приложениями в математической генетике. Поэтому полезно иметь работающие признаки правильности. Известные нам признаки связаны с рассмотрением пространства \(N_V \) линейных форм, исчезающих под действием \(V \):

\[N_V \{ g \mid g(Vx) = 0 \}. \]

Размерность этого пространства не превосходит \(\delta \), ибо, как нетрудно доказать (см. [1]), исчезающие линейные формы не зависят от \(s, u \). Точнее, \(\dim N_V = \delta = \dim (\text{Lin} \text{Im} Q) \).

В [1] были указаны некоторые случаи, когда из \(N_V = 0 \) следует правильность отображения, а именно: 1) \(m \geq 2, \delta = 1 \); 2) \(m = 3, \delta = 2 \); 3) \(m = 3, \delta = 3 \), и было далее сказано (с. 72), что «для остальных типов это неверно». К сожалению, последнее утверждение само неверно, что и побудило нас к дальнейшему исследованию. Результаты которого излагаются ниже.

* Не исключено, что \(u \) или \(v \) отсутствуют. При отсутствии \(u \) будет \(v' = 0 \), при отсутствии \(v \) \(u' = su \).
** Или отсутствует \(u \).
Теорема 1. Если

\[\dim N_\nu < \delta - \frac{(m-1)(m-2)}{2} \] \hspace{1cm} (1)

или \(\delta = 1, \dim N_\nu = 0, \) или, наконец, \(\delta = 0, \) то отображение \(V \) правильно.

Доказательство. Пусть выполнено неравенство (1). Покажем, что подпространство

\[\text{Ker} \ \hat{Q} = \{ \omega | \forall u : \hat{Q}(u, \omega) = 0 \} \]

равно нулю.

Пусть \(e_1 \in \text{Ker} \ \hat{Q}, \ e_1 \neq 0. \) Дополним \(e_1 \) в \(u \)-подпространстве до базиса \(e_1, \ldots, e_{m-1}. \) В этом базисе \(Q \) не зависит от первой координаты. Тем самым,

\[\dim (\text{Lin Im} \ Q) \leq \frac{(m-1)(m-2)}{2}, \] \hspace{1cm} (2)

а с другой стороны, эта размерность равна \(\delta - \dim N_\nu. \) Следовательно, вопреки (1),

\[\dim N_\nu \geq \delta - \frac{1}{2} (m-1)(m-2). \]

Итак, \(\text{Ker} \ \hat{Q} = 0. \) Но \(\text{Im} \ K \subset \text{Ker} \ \hat{Q}. \) Поэтому \(K = 0. \) Остается показать, что \(B = 0. \)

Запишем \(B \) в виде

\[B(u, v) = \sum_{i=1}^{\delta} v_i B_i u, \]

где \(B_i \) — линейные операторы. Так как \(\hat{Q}(u, B(u, v)) = 0, \) то

\[\hat{Q}(u, B_i u) = 0 \ (i = 1, \ldots, \delta) \] \hspace{1cm} (3)

и, так как \(Q(B(u, v)) = 0, \) то

\[\hat{Q}(B_i u, B_k u) = 0 \ i, k = 1, \ldots, \delta. \] \hspace{1cm} (4)

Введем в \(u \)-подпространстве евклидову метрику с тем, чтобы иметь представление \(\hat{Q}(u, \omega) = (Su, \omega), \) где \(S \) — система из \(\delta \) самосопряженных операторов. Тогда (3) и (4) запишутся в виде

\[(B_i^* Su, u) = 0, \ (B_i^* SB_i u, u) = 0 \]

и, так как пространство вещественно, а \(S^* = S, \) то

\[B_i^* Su + SB_i = 0, \ B_k^* SB_i + B_i^* SB_k = 0. \]

Отсюда следует

\[B_i^* SB_k + SB_i B_k = 0, \ B_k^* SB_i + SB_k B_i = 0 \]
\[S(B_iB_k + B_kB_i) = 0, \]

т. е.

\[\text{Im} (B_iB_k + B_kB_i) \subset \text{Ker} S. \]

Но \(\text{Ker} S = \text{Ker} Q = 0. \) Поэтому \(B_iB_k + B_kB_i = 0. \)

В частности,

\[B_i^2 = 0 \quad (i = 1, \ldots, \delta). \] (5)

Если \(B \neq 0, \) то, например, \(B_1 \neq 0, \) но, согласно (5), \(B_1^2 = 0. \)

Рассмотрим жорданов базис \(e_1, \ldots, e_{m-1} \) оператора \(B_1. \) Будем считать его ортонормированным в выбранной метрике. Тогда

\[B_1e_1 = 0, \quad B_1e_2 = e_1, \quad (B_1e_k, e_i) = 0 \quad (k > 2). \]

Пусть \(X \) — самосопряженный оператор, удовлетворяющий уравнению

\[B_1^*X + XB_1 = 0. \] (6)

Тогда

\[Xe_1 = XB_1e_2 = -B_1^*Xe_2, \]

откуда

\[(Xe_1, e_1) = -(Xe_2, B_1e_1) = 0 \]

и

\[(Xe_1, e_2) = -(Xe_2, B_1e_2) = -(Xe_2, e_1) = -(Xe_1, e_2), \]

т. е. \((Xe_1, e_2) = 0. \) Далее, при \(k > 2 \)

\[(Xe_1, e_k) = -(Xe_2, B_1e_k) = -\sum_{i=2}^{m-1} (Xe_2, e_i) (e_i, B_1e_k). \]

Таким образом, действие оператора \(X \) определяется матричными элементами \((Xe_j, e_i) \) \((j, i \geq 2). \) Следовательно, размерность пространства самосопряженных решений уравнения (6) не превосходит \(\frac{1}{2} (m - 1) (m - 2). \) С другой стороны, этому уравнению удовлетворяют все операторы системы \(S, \) порождающие квадратичные отображения \(Q. \) Мы снова приходим к неравенству (2), противоречащему (1). Поэтому \(B = 0. \)

Рассмотрим теперь случай \(\delta = 1, \) \(\dim N_V = 0. \) Если при этом \(m < 2, \) то выполняется неравенство (1), т. е. мы имеем предыдущий случай. Пусть \(m > 2. \) Тогда

\[s' = s^2, \quad u' = su + vBu + kv^2, \quad v' = q(u), \]

где \(q — \) квадратичная форма отличная от нуля в силу условия \(N_V = 0; \) \(k — \) вектор; \(B — \) линейный оператор. Так как \(KQ = 0, \)

то \(kq(u) = 0, \) следовательно, \(k = 0. \) Так как \(B(u, Qu) = 0, \) то \(q(u)Bu = 0, \) следовательно, \(B = 0. \)

Отображение оказывается правильным.

Случай \(\delta = 0 \) вполне трансивален.
Следствие 1. Если
\[\delta > \frac{1}{2} (m - 1) (m - 2) \] (7)
или \(\delta = 1 \), или \(\delta = 0 \), то условие \(N_V = 0 \) влечет правильность отображения \(V \).

Следствие 2. Во всех размерностях \(n \leq 5 \) условие \(N_V = 0 \) влечет правильность отображения \(V \).

Действительно, если \(\delta \geq 2 \), то \(m \leq 3 \) и
\[\frac{1}{2} (m - 1) (m - 2) \leq 1 < \delta. \]

Замечание. Если вместо (7) выполнено более сильное неравенство
\[\delta > \frac{1}{2} m (m - 1), \] (8)
tо \(N_V \neq 0 \), ибо всегда
\[\dim (\text{Lin Im } Q) \leq \frac{1}{2} m (m - 1). \]

Поскольку в случае (8) следствие 1 бессодержательно, хотя и верно. Однако при
\[\delta \leq \frac{1}{2} m (m - 1) \]
oно уже содержательно, как показывает пример
\[s' = s^2, \quad u_i = s u_i (1 \leq i \leq m - 1), \quad v_{ik} = u_{ik}, \]
где \(j < k \) и число различных пар \((j, k) \) равно \(\delta \).

Теорема 1 неулучшаема в терминах размерностей \(m, \delta, \dim N_V \), ибо справедлива

Теорема 2. Если целые числа \(m, \delta, d (m \geq 1, \delta \geq 2, 0 \leq d \leq \delta - 2) \) удовлетворяют неравенству
\[d \geq \delta - \frac{1}{2} (m - 1) (m - 2), \] (9)
tо существует неправильный оператор \(V \) типа \((m, \delta)\), для которого \(\dim N_V = d \).

Для доказательства нам понадобится Лемма. Пусть
\[2 \leq k \leq \frac{1}{2} p (p + 1). \] (10)

Тогда в \(R^p \) существует \(k \) линейно независимых квадратичных форм \(q_i (\omega) \) и \(k \) линейных форм \(\varphi_i (\omega) \) таких, что
\[\sum_{i=1}^{k} q_i (\omega) \varphi_i (\omega) = 0. \]

Доказательство — индукция по \(k \). В \(R^2 \) берем любые линейно независимые формы \(\varphi_1, \varphi_2 \) и полагаем \(q_1 = - \varphi_2 \psi, q_2 = - \varphi_1 \psi \), где \(\psi \neq 0 \) — любая линейная форма.
Пусть для некоторого \(k < \frac{1}{2} p (p + 1) \) уже есть требуемые системы форм
\[
q_1, \ldots, q_k; \quad \varphi_1, \ldots, \varphi_k.
\]
Возьмем любую квадратичную форму \(q \), не принадлежащую линейной оболочке форм \(q_1, \ldots, q_k \), что возможно благодаря неравенству \(k < \frac{1}{2} p (p + 1) \). Системы \(k + 1 \) форм
\[
q_1, \ldots, q_{k-1}, \quad \frac{1}{2} q_k - q, \quad \frac{1}{2} q_k + q;
\]
\[
\varphi_1, \ldots, \varphi_{k-1}, \quad \varphi_k, \quad \varphi_k
\]
удовлетворяют всем требуемым условиям.

Теперь можно указать конструкцию отображения, требуемого в теореме 2. Выберем в \((m + \delta) \)-мерном пространстве систему координат
\[
s, \quad u_1, \ldots, u_{m-1}, \quad v_1, \ldots, v_{\delta-d}, \quad v_{\delta-d+1}, \ldots, \quad v_{\delta}.
\]
Так как
\[
2 \leq \delta - d \leq \frac{1}{2} (m - 1) (m - 2),
\]
то существуют, согласно лемме, \(\delta - d \) линейно независимых квадратичных форм \(q_i (u_2, \ldots, u_{m-1}) \) и столько же линейных форм \(\varphi_i (u_2, \ldots, u_{m-1}) \), связанных тождеством
\[
\sum_{i=1}^{\delta-d} q_i (u) \varphi_i (u) = 0.
\]
Отображение \(V \), заданное формулами
\[
s' = s^2,
\]
\[
u_i' = s u_i + \sum_{i=1}^{\delta-d} v_i \varphi_i (u),
\]
\[
u_i = s u_i \quad (i = 2, \ldots, m - 1),
\]
\[
v_i = q_i (u) \quad (i = 1, \ldots, \delta - d),
\]
\[
v_i = 0 \quad (i = \delta - d + 1, \ldots, \delta),
\]
сохраняет гиперплоскость \(s (x) = 1 \), удовлетворяет условию \(V^2 = V \) при \(s = 1 \) (благодаря (11)), имеет, очевидно, тип \((m, \delta) \), \(\dim N_V = d \) (благодаря линейной независимости форм \(q_i (u) \)) и, очевидно, \(V \) неправильно.

Следствие 3. Если
\[
2 \leq \delta \leq \frac{1}{2} (m - 1) (m - 2),
\]
то существует неправильный оператор \(V \), для которого \(\dim N_V = 0 \).
Этот результат исчерпывающее дополняет следствие 1.

Следствие 4. В размерности \(n = 6 \) существует неправильный оператор, \(V \), для которого \(N_V = 0 \).
Этот оператор имеет тип \((4,2) \).

41
ЛИТЕРАТУРА

2. Любич Ю. И. Письмо в редакцию. — "Успехи мат. наук", 1971, т. XXVI, вып. 6, с. 2—265.

Поступила 24 ноября 1972 г.