§ 1. ВВЕДЕНИЕ

Пусть \(f(z) \) — мероморфная в открытой плоскости функция;
\(T(r, f), m(r, a), n(r, a), \ N(r, a), \ \delta(a, f) \)
введенные П. Неванлинна величины, характеризующие распределение зна-
чений этой функции,
\[
n(r) = n(r, 0) + n(r, \infty), \quad N(r) = N(r, 0) + N(r, \infty).
\]

Предположим обозначать буквой \(K \) с индексами — абсолютные постоянные,
а \(\sigma \) с индексами — величины, зависящие только от рассматриваемой
функции.

Как известно [1], величины дефектов удовлетворяют соотношению
\[
\sum \delta(a) < 2
\]
формула распространена на все значения \(a \) с \(\delta(a) > 0 \). Пусть,
\[
S(f) = \sum \delta(a),
\]
\[
\sigma(\lambda) = \sup S(f),
\]
откуда берется по всем мероморфным функциям нижнего порядка \(\lambda \).

В. Фукс [2] доказал, что при \(\lambda < \infty \) величина \(\sigma(\lambda) \) конечно и спра
ведлива оценка
\[
\sigma(\lambda) \leq K_1 (1 + \sqrt{\lambda} |\ln \lambda|). \quad (1.1)
\]

Основным результатом этой статьи является следующая теорема.

Теорема 1. Справедливо неравенство
\[
\sigma(\lambda) \leq K_2 \sqrt{\lambda}, \quad 0.5 \leq \lambda < \infty. \quad (1.2)
\]

Для целой функции ([1], стр. 240)
\[
h_p(z) = \int_0^z e^{-t^p} dt \quad p = 1, 2, 3, \ldots
\]
сравнительно \(\lambda = p \),
\[
S(h_p) = 1 + \sqrt{p} = 1 + \sqrt{\lambda}.
\]

Поэтому оценка (1.2) точна при больших \(\lambda \) в смысле порядка.

Теорему 1 мы получаем как следствие двух теорем: теоремы 2, при-
надлежащей В. Фуксу [2], и установленной нами теоремы 3.

* Выражаю глубокую признательность И. В. Островскому за руководство работой.
Теорема 2. ([2]). Если \(f(z) \) — мероморфная функция конечного нижнего порядка \(\lambda \), обладает по меньшей мере двумя дефектными значениями, то справедливо соотношение

\[
\sum_{a} \sqrt{\delta(a)} \leq\left\{ 2\pi \lim_{r \to \infty} \left[T(r, f)\right]^{-1} r \mathfrak{M}\left(r, \frac{r\,e^{i\theta}}{r\,e^{i\theta}}\right) \right\}^{\frac{1}{2}},
\]

где

\[
\mathfrak{M}(r, g) = \frac{1}{2\pi} \int_{0}^{2\pi} \left| g(re^{i\theta}) \right| d\theta.
\]

Теорема 3. Если \(f(z) \) — мероморфная функция нижнего порядка \(\lambda (\lambda \geq 0,5) \), то

\[
\lim_{r \to \infty} \left[T(r, f)\right]^{-1} r \mathfrak{M}\left(r, \frac{r\,e^{i\theta}}{r\,e^{i\theta}}\right) \leq K_3 \lambda.
\]

§ 2. ВСПОМОГАТЕЛЬНЫЕ СООТНОШЕНИЯ

Лемма 1. Пусть \(f(z) \) — функция мероморфная в \(z \neq \infty \), а \(G_{a, R} = \{z : 0 < |z| < R, |\arg z| < \alpha\} \) \((0 < \alpha < \pi) \). Тогда при \(z \in G_{a, R} \) справедливо соотношение

\[
\ln f\left(z e^{\theta}\right) = - \frac{1}{2\pi} \int_{0}^{R} \ln f\left(te^{i(\theta - \alpha)}\right) t^{-1} \left\{ \frac{1}{itx - z} + \frac{tR^2x}{z^2t^2x - iR^2tx} \right\} dt + \\
+ \frac{1}{2\pi} \int_{0}^{R} \ln f\left(te^{i(\theta - \alpha)}\right) t^{-1} \left\{ \frac{1}{itx + z} - \frac{tR^2x}{z^2t^2x - iR^2tx} \right\} dt + \\
+ \frac{1}{4\pi} \int_{-a}^{a} \ln f\left(Re^{i(\theta + \alpha)}\right) \left(\frac{(R^2e^{ix} + z^2x}{(Re^{ix})x - z} - \frac{R^2x - z\,x(Re^{ix})x}{R^2x + z^2(Re^{ix})x} \right) dh + \\
+ \sum_{c_k \in G_{a, R}} \Delta_k \ln \frac{z^2x - c_k^x}{z^2x - c_k^x + c_k} + \sum_{c_k \in G_{a, R}} \Delta_k \ln \frac{R^2x - z^2c_k^x}{R^2x + z^2c_k^x} + C_1,
\]

где \(\theta \) — любое действительное число, \(x = \pi (2\alpha)^{-1} \), \(c_k^x = c_k^x (\theta) \) — нули и полюсы мероморфной функции \(f(z e^{\theta}) \), \(\Delta_k = 1 \), если \(c_k \) — полюс и \(\Delta_k = -1 \), если \(c_k \) — нуль, \(C_1 \) — постоянная относительно \(z \).

Соотношение (2.1) получается прибавлением минимых частей к известной формуле Пуассона — Иенсена для области \(G_{a, R} \). (2.1) является аналогом известной формулы Шварца для круга, см. [1] стр. 165.

Лемма 2. Пусть \(f(z) \) — мероморфная в \(z \neq \infty \) функция. При \(0 < r_0 < r < 0,5R \) и любом действительном \(\theta \) справедливо неравенство

\[
\frac{r}{2\pi} \int_{-\frac{\alpha}{2}}^{\frac{\alpha}{2}} \left| \frac{f'(r e^{i(\theta + \varphi)})}{f(r e^{i(\theta + \varphi)})} \right| d\varphi \leq \frac{1}{\alpha} \int_{0}^{\pi} \left\{ |\ln | f(te^{i(\theta - \alpha)}) | | + |\ln | f(te^{i(\theta - \alpha)}) || \right\} P(t, r, x) dt + \\
+ \frac{K_4}{\alpha} \left(\frac{r}{R^2} \right) \int_{0}^{\pi} \left\{ |\ln | f(te^{i(\theta - \alpha)}) | | + |\ln | f(te^{i(\theta - \alpha)}) || \right\} t^{-1} dt +
\]
\[+ K_5 \left(\frac{r}{R} \right)^x \int_{-\frac{\alpha}{4}}^{\frac{\alpha}{4}} \ln \left| f \left(Re^{i(\theta + \frac{\pi}{2})} \right) \right| d\theta + 2 \sum_{c_m \in G_m, R} \left(\frac{r}{|c_m|} \right)^x \Phi \left(\left(\frac{r}{|c_m|} \right)^x \right) +
\]

\[+ \Phi \left(\left(\frac{r}{R^2} \right)^x \right) \sum_{c_m \in G_m, R} |c_m|^x, \quad (2.2) \]

\[P(t, r, \omega) = t^{x-1} r^x \left(t^2 + r^2 \right)^{-1}, \]

\[\Phi(u) = \frac{1}{2\pi} \int_0^{2\pi} \frac{d\phi}{|ue^{i\phi} - 1|}, \]

\[= c_m(\theta) — \text{nuly i polusy} \ f(ze^{i\theta}). \]

Доказательство. Продифференцировав соотношение (2.1) по \(z = re^{i\theta} \), получаем неравенство

\[\left| \frac{P(re^{i(\theta+\pi/2)})}{f(re^{i(\theta+\pi/2)})} \right| \leq \frac{\pi}{2\alpha} \int_0^R \left| \ln \left(f \left(te^{i(\theta+\pi/2)} \right) \right) \right| t^{x-1} \left\{ \frac{r^x}{|itx - z^x|^2} + \frac{r^x \xi}{|2z^x - iR^2z^x|^2} \right\} dt +
\]

\[+ \frac{\pi}{2\alpha} \int_{-\frac{\alpha}{4}}^{\frac{\alpha}{4}} \left| \ln \left| f \left(te^{i(\theta-\pi/2)} \right) \right| \right| t^{x-1} \left(\frac{r^x}{|itx + z^x|^2} + \frac{r^x \xi}{|2z^x + iR^2z^x|^2} \right) dt +
\]

\[+ \frac{\pi}{2\alpha} \int_{-\frac{\alpha}{4}}^{\frac{\alpha}{4}} \left| \ln \left| f \left(R e^{i(\theta+\pi)} \right) \right| \right| \left\{ \frac{r^x \xi}{|(Re^{i\theta})^x - z^x|^2} + \frac{r^x \xi}{|Rx + (ze^{i\theta})^x|^2} \right\} d\theta +
\]

\[+ \frac{\pi}{2\alpha} r^x \sum_{c_m \in G_m, R} \left(\frac{1}{|z^x + c_m^x|} + \frac{1}{|z^x - c_m^x|} \right) +
\]

\[+ \frac{\pi}{2\alpha} r^x \sum_{c_m \in G_m, R} |c_m|^x \left(\frac{1}{|R^2z^x - z^x c_m^x|} + \frac{1}{|R^2z^x + z^x c_m^x|} \right) \quad (2.3) \]

Для \(z \in G_m, R \) нетрудно убедиться в справедливости следующих неравенств:

\[|\pm it^x + z^x| \geq \max \left\{ \frac{\sqrt{2}}{2} t^x, \frac{\sqrt{2}}{2} r^x \right\} \geq \frac{\sqrt{2}}{2} \left(t^x + r^x \right) \geq \frac{\sqrt{2}}{4} \sqrt{t^2 + r^2} \quad (2.4) \]

\[|\pm iR^2z^x + z^x t^x| \geq R^2z^x \left(1 - \frac{1}{2^x} \right) \geq K^2 R^2z^x \quad (0 \leq t < R). \quad (2.5) \]

Замечая также, что \((c_m = |c_m| e^{i\theta_m}) \),

\[\int_{-\frac{\alpha}{4}}^{\frac{\alpha}{4}} \frac{d\varphi}{|r e^{i(\varphi + \alpha/4)} - c_m^x|} = \frac{1}{|c_m|^x} \int_{-\frac{\alpha}{2}}^{\frac{\alpha}{2}} \frac{d\varphi}{\left(\frac{r}{|c_m|} \right)^x e^{i\varphi(\xi - \alpha m)} - 1} =
\]

\[= \frac{2\alpha}{\pi |c_m|^x} \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{d\theta}{\left(\frac{r}{|c_m|} \right)^x e^{i\theta} - 1} \leq \frac{2\alpha}{\pi |c_m|^x} \Phi \left(\left(\frac{r}{|c_m|} \right)^x \right), \quad (2.6) \]
Интегрируя неравенства (2.3) по \(\varphi \) в пределах от \(-\frac{\alpha}{2}\) до \(\frac{\alpha}{2}\) и учтуя (2.4), (2.5) и (2.6), получаем (2.2).

Лемма 3. Если \(f(z) \) — мероморфная функция в \(z \neq \infty \), тогда при

\[
\begin{align*}
\text{Re} \left(r, \frac{r'}{r} \right) & \leq 6\pi a^{-2} \int_0^R \{ m(t, 0) + m(t, \infty) \} P(t, r, a) \, dt + \\
K_8 a^{-1} \left(\frac{r}{R} \right) x T(R, f) & + 6 \sum_{l < R} \left(\frac{r}{c_m} \right)^x \Phi \left[\left(\frac{r}{c_m} \right)^x \right] + K_0 \left(\frac{r}{R} \right)^x n(R).
\end{align*}
\tag{2.7}
\]

Доказательство. Пусть \(\theta_k = \beta + k\pi \), где \(0 \leq \beta < 2\pi \), а \(k \) принимает значения \(0, 1, 2 \ldots \) \(q = [4\pi] \). Положив в неравенстве (2.2) \(\theta = \theta_k \) \(k = 0, 1, 2 \ldots \) \(q \), получим \(q + 1 \) неравенство. Складывая эти неравенства по \(k \) от 0 до \(q \), будем иметь:

\[
\begin{align*}
\frac{r}{2\pi} \sum_{k=0}^q \int_{-\frac{\alpha}{2}}^{\frac{\alpha}{2}} f' \left(re^{i(\beta + k\pi)} \right) f \left(re^{i(\beta + k\pi)} \right) \, d\varphi & \leq a^{-1} \sum_{k=0}^q \int_0^R \{ \ln |f(te^{i(\beta + (k+1)\pi)})| + \\
\ln |f(te^{i(\beta + (k-1)\pi)})| \} P(t, r, a) \, dt + \\
K_4 a^{-1} \left(\frac{r}{R^2} \right)^x \sum_{k=0}^q \int_{-\frac{\alpha}{2}}^{\frac{\alpha}{2}} \left| \ln |f(te^{i(\beta + (k+1)\pi)})| + \\
\ln |f(te^{i(\beta + (k-1)\pi)})| \right| t^{-1} \, dt + \\
K_3 a^{-1} \left(\frac{r}{R} \right)^x \sum_{k=0}^q \sum_{\varphi = -\frac{\alpha}{2} + k\pi}^{\frac{\alpha}{2}} \left| \ln |f(te^{i(\beta + k\pi)})| \right| \, d\theta + \\
+ 2 \sum_{k=0}^q \sum_{c_m(\theta_k) \in G_a, R} \left(\frac{r}{c_m} \right)^x \Phi \left[\left(\frac{r}{c_m} \right)^x \right] + K_0 \left(\frac{r}{R^2} \right)^x \sum_{k=0}^q \sum_{c_m(\theta_k) \in G_a, R} \left| c_m \right|^x.
\end{align*}
\tag{2.8}
\]

Отметим далее следующие соотношения

\[
\begin{align*}
\frac{r}{2\pi} \sum_{k=0}^q \int_{-\frac{\alpha}{2}}^{\frac{\alpha}{2}} f' \left(re^{i\theta_k} \right) f \left(re^{i\theta_k} \right) \, d\varphi & = \frac{r}{2\pi} \sum_{k=0}^q \int_{-\frac{\alpha}{2}}^{\frac{\alpha}{2}} \left| \frac{f'(re^{i\theta_k})}{f(re^{i\theta_k})} \right| \, d\theta = \\
& = r \int_{-\frac{\alpha}{2} + \beta}^{\frac{\alpha}{2} + \beta} \left| \frac{f'(re^{i\theta})}{f(re^{i\theta})} \right| \, d\theta > \\
& = \frac{r}{2\pi} \int_{-\frac{\alpha}{2} + \beta}^{\frac{\alpha}{2} + \beta} \left| \frac{f'(re^{i\theta})}{f(re^{i\theta})} \right| \, d\theta = \text{Re} \left(r, \frac{r'}{r} \right),
\end{align*}
\tag{2.9}
\]

\[
\begin{align*}
\sum_{k=0}^q \sum_{c_m(\theta_k) \in G_a, R} \left(\frac{r}{c_m} \right)^x \Phi \left[\left(\frac{r}{c_m} \right)^x \right] & = \sum_{k=0}^{q-1} \sum_{c_m(\theta_k) \in G_a, R} \left(\frac{r}{c_m} \right)^x \Phi \left[\left(\frac{r}{c_m} \right)^x \right] + \\
+ \sum_{c_m(\theta_k) \in G_a, R} \left(\frac{r}{c_m} \right)^x \Phi \left[\left(\frac{r}{c_m} \right)^x \right] & \leq 2 \sum_{l < c_m < R} \left(\frac{r}{c_m} \right)^x \Phi \left[\left(\frac{r}{c_m} \right)^x \right] + \\
+ \sum_{l < c_m < R} \left(\frac{r}{c_m} \right)^x \Phi \left[\left(\frac{r}{c_m} \right)^x \right].
\end{align*}
\]

В. П. Петренко
\[+ \sum_{c_m \in G_0, R} \left(\frac{r}{|c_m|} \right)^x \Phi \left[\left(\frac{r}{|c_m|} \right)^x \right] \leq 3 \sum_{|c_m| < R} \left(\frac{r}{|c_m|} \right)^x \Phi \left[\left(\frac{r}{|c_m|} \right)^x \right], \tag{2.10} \]

Аналогично (2.10) находим
\[\sum_{k=0}^{q} \left| \ln |f(R e^{i(\beta + k2\pi)})| \right| d\theta \leq 3 \{ m(R, 0) + m(R, \infty) \}, \tag{2.11} \]
\[\sum_{k=0}^{q} \sum_{c_m \in G_0, R} \left| c_m \right|^x \leq 3 \sum_{|c_m| < R} \left| c_m \right|^x. \tag{2.12} \]

Учитывая (2.8), (2.9), (2.10), (2.11) и (2.12), получаем соотношение
\[r \Re \left(r, \frac{r'}{f} \right) \leq a^{-1} \sum_{k=0}^{R} \left\| \ln |f(\theta e^{i(\beta + (k-1)\pi)})| \right\| + \left\| \ln |f(\theta e^{i(\beta + (k-1)\pi)})| \right\| \Gamma(t, r, a) dt + \]
\[- K_{10} a^{-1} \left(\frac{r}{R^2} \right)^x \sum_{k=0}^{R} \left\| \ln |f(\theta e^{i(\beta + (k-1)\pi)})| \right\| \Gamma^x dt - K_{10} a^{-1} \left(\frac{r}{R^2} \right)^x T(R, f) + 6 \sum_{|c_m| < R} \left(\frac{r}{|c_m|} \right)^x \Phi \left[\left(\frac{r}{|c_m|} \right)^x \right] \right. \left. + K_{11} \left(\frac{r}{R^2} \right)^x \sum_{|c_m| < R} \left| c_m \right|^x. \right. \]

Полученное соотношение справедливо при любом \(\beta \), \(0 \leq \beta < 2\pi \). Принимаем его по \(\beta \) от 0 до \(2\pi \), тогда
\[r \cdot \Re \left(r, \frac{r'}{f} \right) \leq 2^{q+1} \sum_{0}^{R} \left\{ m(t, 0) + m(t, \infty) \right\} \Gamma(t, r, a) dt + \]
\[+ K_{12} a^{-1} \left(\frac{r}{R^2} \right)^x \int_{0}^{R} \left\{ m(t, 0) + m(t, \infty) \right\} \Gamma^x dt + K_{10} a^{-1} \left(\frac{r}{R^2} \right)^x T(R, f) + \]
\[+ 6 \sum_{|c_m| < R} \left(\frac{r}{|c_m|} \right)^x \Phi \left[\left(\frac{r}{|c_m|} \right)^x \right] \right. \left. + K_{11} \left(\frac{r}{R^2} \right)^x \sum_{|c_m| < R} \left| c_m \right|^x. \right. \]

Для завершения доказательства леммы 3 достаточно заметить, что
\[\frac{q+1}{a} \leq \frac{2\pi + \alpha}{\alpha^2} \leq \frac{3\pi}{\alpha^2}. \]

§ 3. ДОКАЗАТЕЛЬСТВО ТЕОРЕМЫ 3. (\(\lambda < \rho \))

Пусть \(f(z) \) имеет нижний порядок \(\lambda \) и порядок \(\rho \).
Выберем \(r \) так, чтобы \(\lambda < r < \rho \), и возьмем \(a < \pi (2r)^{-1} \). Поможем неравенство (2.7) на \(r^{t+1} \) и пронтегрируем его по \(r \) от \(r_0 \) до \(0.5R \), получаем
\[\int_{r_0}^{0.5R} r^{-1-1} \left| r \Re \left(r, \frac{r'}{f} \right) \right| dr \leq 6\pi a^{-2} \int_{r_0}^{R} \left\{ m(t, 0) + \]
\[+ m(t, \infty) \right\} \int_{r_0}^{R} r^{-1-1} \Gamma(t, r, a) dr dt + 6\pi a^{-2} \int_{0}^{r_0} \left\{ m(t, 0) + \]
Найдем теперь оценки для двойных интегралов в (3.1). Обозначим

\[I_1 = \int_{r_0}^{R} \{m(t, 0) + m(t, \infty)\} \int_{r_0}^{r} r^{-1} P(t, r, a) \, dr \, dt + \int_{r_0}^{R} \int_{r_0}^{0.5R} \left(\frac{r}{t} \right)^x \Phi \left(\frac{r}{t} \right)^\gamma \right) \, dr \, dn(t) + K_{18} (\pi - 2\alpha \gamma)^{-1} R^{-1} m(R). \] (3.1)

Произведя замену \(r = ts \), находим

\[I_1 = \int_{r_0}^{R} \{m(t, 0) + m(t, \infty)\} t^{-1} \int_{\frac{r_0}{t}}^{\frac{R}{t}} s^{-1} \cdot t \cdot P(t, t \cdot s, a) \, ds \, dt. \]

Так как

\[t \cdot P(t, t \cdot s, a) = P(1, s, a), \]

то

\[I_1 \leq \int_{r_0}^{R} t^{-1} \{m(t, 0) + m(t, \infty)\} dt \int_{0}^{\infty} s^{-1} P(1, s, a) \, ds. \]

Для второго интеграла справа мы имеем

\[\int_{0}^{\infty} s^{-1} P(1, s, a) \, ds = \int_{0}^{\infty} \frac{\pi}{s^{2\pi}} ds = \frac{\alpha}{\pi} \int_{0}^{\infty} \frac{du}{u^{\frac{2\pi}{a} + 1} (1 + u)} = \frac{\alpha}{\cos \alpha}, \] (3.2)

поэтому

\[I_1 \leq \frac{\alpha}{\cos \alpha \gamma} \int_{r_0}^{R} r^{-1} \{m(r, 0) + m(r, \infty)\} \, dr \leq \frac{\alpha}{\cos \alpha \gamma} \int_{r_0}^{0.5R} r^{-1} \{m(r, 0) + m(r, \infty)\} \, dr + \frac{2\alpha}{\cos \alpha \gamma} \int_{0.5R}^{R} r^{-1} T(r, f) \, dr \leq \frac{\alpha}{\cos \alpha \gamma} \int_{r_0}^{0.5R} r^{-1} \{m(r, 0) + m(r, \infty)\} \, dr + C_2 \frac{\alpha}{\cos \alpha \gamma} R^{-1} T(R, f). \] (3.3)

Для величины

\[I_2 = \int_{r_0}^{R} \{m(t, 0) + m(t, \infty)\} \int_{r_0}^{r} r^{-1} P(t, r, a) \, dr \, dt \]

получаем оценку

\[I_2 \leq \int_{0}^{R} \{m(t, 0) + m(t, \infty)\} \int_{r_0}^{0.5R} \frac{t^{-1} r_x}{r_{1/2} + 1 + x} \, dr \, dt \leq \int_{0}^{R} t^{-1} \{m(t, 0) + m(t, \infty)\} \int_{r_0}^{0.5R} \frac{dr}{r_{1/2} + 1 + x} dt = \frac{1}{(\gamma + x) r_0^{\gamma + x}} \int_{0}^{r_0} t^{-1} \{m(t, 0) + m(t, \infty)\} \, dt \leq C_3 \frac{T(r_0, f)}{x \cdot r_0^x} = C_4 \cdot a. \] (3.4)
\[I_3 = \int_0^R d n(t) \int_{r_0}^{0.5R} r^{-1-1} \cdot \left(\frac{r}{t} \right)^x \Phi \left[\left(\frac{r}{t} \right)^x \right] dr. \]

При замене замену \(r = ts \), находим *

\[I_3 = \int_0^R \frac{t^{-1} dn(t)}{r} \int_{\frac{r_0}{t}}^{0.5R} s^{x-1} \Phi (s^x) ds \leqslant \int_0^\infty s^{x-1} \Phi (s^x) ds \int_0^R t^{-1} dn(t), \]

заменя далее \(s^x = u \), получаем

\[I_3 \leqslant \frac{1}{x} \int_0^\infty u^{-\frac{1}{x}} \Phi (u) du \int_0^R t^{-1} dn(t) = \frac{2\pi}{\alpha} \int_0^\infty u^{-\frac{2\alpha}{\pi}} \Phi (u) du \int_0^R t^{-1} dn(t) \tag{3.5} \]

Эдрий и Фукс [3] показали, что при \(0 < \sigma < 1 \) справедливо соотношение

\[\int_0^\infty u^{-\sigma} \Phi (u) du \leqslant 4.4 \csc \pi \sigma. \tag{3.6} \]

Так как \(2\alpha \gamma < \pi \), то из (3.5) и (3.6) получаем

\[I_3 \leqslant \frac{8.8}{\pi} \alpha \csc 2\alpha \gamma \int_0^R t^{-1} dn(t). \]

Интегрирование по частям последнего интеграла дает

\[\int_0^R t^{-1} dn(t) = R^{-1} n(R) + \gamma R^{-1} N(R) + \gamma^2 \int_0^R r^{-1-1} N(r) dr, \]

послому

\[I_3 \leqslant \frac{8.8}{\pi} \alpha \gamma^2 \csc 2\alpha \gamma \int_0^R r^{-1-1} N(r) dr + C_3 \alpha \csc 2\alpha \gamma \cdot R^{-1} \cdot N(R) + \]

\[+ C_6 \alpha \csc 2\alpha \gamma \cdot R^{-1} \cdot n(R) + C_7 \alpha \csc 2\alpha \gamma. \tag{3.7} \]

Для величины \(n(R) \) имеем оценку

\[n(R) \ln 2 \leqslant \int_0^R \ln \left(\frac{2R}{t} \right) dn(t) \leqslant \int_0^{2R} \ln \left(\frac{2R}{t} \right) dn(t) = N(2R) \leqslant T(2R). \tag{3.8} \]

Используя (3.3), (3.4), (3.7) и (3.8), мы из (3.1) находим

\[\int_{r_0}^{0.5R} r^{-1-1} \left(r \mathcal{M} \left(r, \frac{r'}{t} \right) \right) dr \leqslant \frac{6\pi}{\alpha \cos \alpha \gamma} \int_{r_0}^{0.5R} r^{-1-1} \left(m(r, 0) + m(r, \infty) \right) dr + \]

\[+ \frac{C_8}{\alpha} + \frac{C_9}{\alpha \cos \alpha \gamma} R^{-1} T(R, f) + K_{14} \left(\pi - 2\alpha \gamma \right)^{-1} \cdot R^{-1} T(2R, f) + \]

\[+ \frac{6 \cdot 8.8}{\pi} \alpha \gamma^2 \csc 2\alpha \gamma \int_{r_0}^{0.5R} r^{-1-1} N(r) dr + C_{10} \alpha \csc 2\alpha \gamma R^{-1} T(2R, f) + \]

\[+ C_{11} \alpha \csc 2\alpha \gamma. \]

* Мы считаем, что \(f(0) = 1 \). Этим не ограничивается общность наших рассуждений.
Выберем в этом неравенстве $\alpha = \frac{\gamma}{3}$, тогда

$$
\int_{r_0}^{0.5R} r^{-1} \left\{ r \mathfrak{M} \left(r, \frac{r'}{r} \right) \right\} dr \leq 36\gamma \int_{r_0}^{0.5R} r^{-1} \left\{ m(r, 0) + m(r, \infty) \right\} dr +
\int_{r_0}^{0.5R} r^{-1} N(r) \, dr + C_{12} R^{-\gamma} \cdot T(2R, f) + C_{13} \leq 72\gamma \int_{r_0}^{r^*_0} r^{-1} T(r, f) \, dr +
C_{12} R^{-\gamma} T(2R, f) + C_{13}.
$$

(3.9)

Применим теперь это неравенство к $f'(z)$, вместо $f(z)$ (это можно сделать, так как порядок и нижний порядок у $f(z)$ и $f'(z)$ совпадают ([4] стр. 52). Учитывая, кроме того, соотношение ([5] стр. 61)

$$
T(r, f') \leq 2T(r, f) + 4 \cdot \ln T(2r, f) + 4 \ln r + K_{13} \quad (0 < r_0 < r),
$$

мы из (3.9) находим

$$
\int_{r_0}^{0.5R} r^{-1} \left\{ r \mathfrak{M} \left(r, \frac{r'}{r} \right) \right\} dr \leq 144\gamma \int_{r_0}^{0.5R} r^{-1} \cdot T(r, f) \, dr +
\int_{r_0}^{0.5R} r^{-1} \ln T(r, f) \, dr + C_{14} R^{-\gamma} \left\{ T(4R, f) + \ln T(4R, f) \right\} +
C_{16} \leq \{144\gamma + o(R)\} \int_{r_0}^{0.5R} r^{-1} T(r, f) \, dr + C_{15} (1 +
+ o(R)) R^{-\gamma} T(4R, f) + C_{16}.
$$

Таким образом,

$$
\int_{r_0}^{0.5R} r^{-1} \left\{ r \mathfrak{M} \left(r, \frac{r'}{r} \right) \right\} dr \leq 144\gamma + o(R) + C_{15} (1 + o(R)) R^{-\gamma} T(4R, f) + C_{16} \int_{r_0}^{0.5R} r^{-1} T(r, f) \, dr.
$$

(3.10)

Так как $\gamma < \rho$, то при $R \to \infty$

$$
\int_{r_0}^{0.5R} r^{-1} T(r, f) \, dr \to \infty,
$$

с другой стороны, $\lambda < \gamma$, поэтому найдется последовательность $\{R_i\} \uparrow \infty$, что

$$
R_i^{-\gamma} T(4R_i, f) \to 0,
$$

следовательно, устремляя в (3.10) $R \to \infty$ по этой последовательности $\{R_i\} \uparrow \infty$, получаем

$$
\lim_{R \to \infty} \frac{\int_{r_0}^{0.5R} r^{-1} \left\{ r \mathfrak{M} \left(r, \frac{r'}{r} \right) \right\} dr}{\int_{r_0}^{0.5R} r^{-1} T(r, f) \, dr} \leq 144\gamma.
$$
$$\lim_{r \to \infty} \frac{M(r, \frac{r'}{r})}{T(r, \lambda)} \leq 144 \gamma.$$

Как последнее неравенство справедливо при любом γ, $\lambda < \gamma < \rho$, то теорема 3 доказана для случая $\lambda < \rho$.

§ 4. ДОКАЗАТЕЛЬСТВО ТЕОРЕМЫ 3 ($\lambda = \rho$).

Пусть $\rho < \gamma < \rho + \varepsilon$, тогда при $\alpha < \pi (2\gamma)^{-1}$ получаем $x = \pi (2\alpha)^{-1} > \gamma$.

Трималя в (2.7) $R \to \infty$, получим соотношение

$$r \frac{M(r, \frac{r'}{r})}{l} \leq 6\pi a^{-2} \int_0^\infty \{m(t, 0) + m(t, \infty)\} P(t, r, \alpha) dt +$$

$$+ 6 \int_0^\infty \left(\frac{r}{l}\right)^x \Phi \left[\left(\frac{r}{l}\right)^x\right] dn(t),$$ \hspace{1cm} (4.1)

равенством при любом $r (0 < r_0 < r < \infty)$. Умножим (4.1) на r^{-1} и интегрируем по r от ω до ∞, имеем

$$r^{-1} \int_0^\infty \{r \frac{M(r, \frac{r'}{r})}{l}\} dr \leq 6\pi a^{-2} \int_0^\infty \{m(t, 0) + m(t, \infty)\} \int_\omega^\infty r^{-1} P(t, \omega, \alpha) dr dt +$$

$$+ 6 \int_\omega^\infty dn(t) \int_0^\omega r^{-1} \left(\frac{r}{l}\right)^x \Phi \left[\left(\frac{r}{l}\right)^x\right] dr.$$ \hspace{1cm} (4.1)

Обозначим

$$I_4 = \int_0^\infty \{m(t, 0) + m(t, \infty)\} dt \int_\omega^\infty r^{-1} P(t, r, \alpha) dr.$$

Приняв замену $r = ts$, получаем

$$I_4 = \int_0^\infty t^{-1} \{m(t, 0) + m(t, \infty)\} dt \int_\omega^\infty s^{-1} P(1, s, \alpha) ds.$$ \hspace{1cm} (4.2)

Положим

$$G_1(t) = \int_\omega^\infty s^{-1} P(1, s, \alpha) ds,$$

$$F_1(t) = \int_{\omega}^\infty s^{-1} \{m(s, 0) + m(s, \infty)\} ds,$$

тогда (4.2) принимает вид

$$I_4 = - \int_0^\infty G_1 \left(\frac{\omega}{l}\right) dF_1(t).$$

Интегрирование по частям в последнем равенстве дает

$$I_4 = -F_1(t) G_1 \left(\frac{\omega}{l}\right) + \int_0^\infty F_1(t) \cdot \left(\frac{\omega}{l}\right)^{-1} P(1, \frac{\omega}{l}, \alpha) \frac{\omega}{l^2} dt.$$
Замечая далее, что при $t \to 0$ и $\omega \gg \omega_0 > 0$

$$F_1(t) \cdot G_1\left(\frac{\omega}{t}\right) = \int_1^\infty r^{-1} \{m(r, 0) + m(r, \infty)\} \, dr \int_0^\infty s^{-1} P(1, s, \alpha) \, ds =$$

$$= \int_1^\infty r^{-1} \{m(r, 0) + m(r, \infty)\} \, dr \int_0^\infty \frac{s^{\frac{\omega}{\omega_0}}}{s^{\frac{\omega}{\omega_2}}} \, ds =$$

$$= t^{\gamma + \frac{\pi}{2a}} \int_1^\infty r^{-1} \{m(r, 0) + m(r, \infty)\} \, dr \int_0^\infty \frac{u^{\frac{\omega}{\omega_2}} du}{u^{\gamma+1}} \left(1 + \frac{s^a}{u^{2a}}\right) \leq$$

$$\leq 2 \cdot t^{\gamma + \frac{\pi}{2a}} \int_1^\infty \frac{T(r, \frac{\omega}{r})}{r^{\gamma+1}} \, dr \int_0^\infty \frac{du}{u^{\gamma+1}} = \frac{2}{\omega} \left(\frac{\omega}{\omega_2}\right)^{\gamma + \frac{\pi}{2a}} \int_1^\infty \frac{T(r, \frac{\omega}{r})}{r^{\gamma+1}} \, dr +$$

$$+ \frac{2}{\omega} \left(\frac{\omega}{\omega_2}\right)^{\gamma + \frac{\pi}{2a}} \int_1^\infty \frac{T(r, \frac{\omega}{r})}{r^{\gamma+1}} \, dr \leq K_1 e^{\frac{\omega}{2a}} (1 + o(t)) \to 0$$

и

$$\lim_{t \to \infty} F_1(t) G_1\left(\frac{\omega}{t}\right) = 0,$$

мы имеем

$$I_4 = \int_0^\infty F_1(t) \left(\frac{\omega}{t}\right)^{-\gamma-1} P\left(1, \frac{\omega}{t}, \alpha\right) \frac{\omega}{t^2} \, dt. \quad (4.3)$$

Рассмотрим также двойной интеграл

$$I_5 = \int_0^\infty \int_0^\infty n(t) r^{-1} \cdot \left(\frac{r}{t}\right)^x \cdot \Phi\left[\left(\frac{r}{t}\right)^x\right] \, dr = \int_0^\infty t^{-\gamma} \int_0^\infty s^{x-\gamma-1} \Phi(s^x) \, ds.$$

Аналогично положим

$$G_2(u) = \int_u^\infty s^{x-\gamma-1} \Phi(s^x) \, ds,$$

$$F_2(u) = \int_0^u s^{-\gamma} \, ds = \frac{n(u)}{u^{\gamma}} = \gamma \cdot N(u) + \gamma \int_0^u s^{-\gamma} N(s) \, ds.$$

Поэтому

$$I_5 = -\int_0^\infty \left| G_2\left(\frac{\omega}{t}\right) dF_2(t) = -F_2(t) G_2\left(\frac{\omega}{t}\right)\right|_{0}^\infty +$$

$$+ \int_0^\infty F_2(t) \left(\frac{\omega}{t}\right)^{-\gamma-1} \Phi\left[\left(\frac{\omega}{t}\right)^x\right] \frac{\omega}{t^2} \, dt = -\int_0^\infty n(t) + \gamma N(t) \left(\frac{\omega}{t}\right)^{-\gamma-1} \Phi\left[\left(\frac{\omega}{t}\right)^x\right] \frac{\omega}{t^2} \, dt +$$

$$+ \gamma \int_0^\infty \left| r^{-\gamma} N(r) \, dr \right| \left(\frac{\omega}{t}\right)^{-\gamma-1} \Phi\left[\left(\frac{\omega}{t}\right)^x\right] \frac{\omega}{t^2} \, dt,$$
\[I_5 \leq \gamma^2 \int_0^\infty \left\{ \int r^{\gamma - 1} N(r) \, dr \right\} \left(\frac{\omega}{t} \right)^{x-\gamma-1} \Phi \left[\left(\frac{\omega}{t} \right)^x \right] \frac{\omega}{t^2} \, dt. \] (4.4)

Используя соотношения (4.3) и (4.4), получаем

\[
\int_0^\infty r^{\gamma - 1} \left\{ r r \left(r, \frac{r'}{t} \right) \right\} \, dr \leq 6\pi x^{-2} \int_0^\infty \left\{ \int r^{\gamma - 1} \{ m(r, 0) + m(r, \infty) \} \, dr \right\} \left(\frac{\omega}{t} \right)^{x-\gamma-1} P \left(1, \frac{\omega}{t}, \alpha \right) \frac{\omega}{t^2} \, dt +
\]

\[+ 6\pi \gamma^2 \int_0^\infty \left\{ \int r^{\gamma - 1} N(r) \, dr \right\} \left(\frac{\omega}{t} \right)^{x-\gamma-1} \Phi \left[\left(\frac{\omega}{t} \right)^x \right] \frac{\omega}{t^2} \, dt \leq
\]

\[\leq 12\pi x^{-2} \int_0^\infty \left\{ \int r^{\gamma - 1} T(r, f) \, dr \right\} \left(\frac{\omega}{t} \right)^{x-\gamma-1} P \left(1, \frac{\omega}{t}, \alpha \right) \frac{\omega}{t^2} \, dt +
\]

\[+ 12\pi \gamma^2 \int_0^\infty \left\{ \int r^{\gamma - 1} T(r, f) \, dr \right\} \left(\frac{\omega}{t} \right)^{x-\gamma-1} \Phi \left[\left(\frac{\omega}{t} \right)^x \right] \frac{\omega}{t^2} \, dt =
\]

\[= 12 \int_0^\infty \left\{ \int r^{\gamma - 1} T(r, f) \, dr \right\} \pi x^{-2} \left(\frac{\omega}{t} \right)^{x-\gamma-1} P \left(1, \frac{\omega}{t}, \alpha \right) +
\]

\[+ \gamma^2 \left(\frac{\omega}{t} \right)^{x-\gamma-1} \Phi \left[\left(\frac{\omega}{t} \right)^x \right] \frac{\omega}{t^2} \, dt. \] (4.5)

\[\gamma \text{ следует, что}
\]

\[\lim_{t \to \infty} t^s \int_0^\infty \frac{T(r, f)}{r^{\gamma+1}} \, dr = \infty,
\]

существует неограниченная возрастающая последовательность, что при \(t \leq \omega_i \)

\[t^s \int_0^\infty \frac{T(r, f)}{r^{\gamma+1}} \, dr \leq \omega_i^s \int_0^\infty \frac{T(r, f)}{r^{\gamma+1}} \, dr. \] (4.6)

С другой стороны, \(\int_0^\infty r^{\gamma - 1} T(r, f) \, dr \) не возрастает с \(t \), т. е. при \(t \geq \omega_i \)

\[\int_0^\infty r^{\gamma - 1} T(r, f) \, dr \geq \int_0^\infty r^{\gamma - 1} T(r, f) \, dr. \] (4.7)

Теперь в соотношении (4.5) \(\omega = \omega_i \), тогда, учитывая (4.6) и получаем

\[- \int r \Re \left(r, \frac{r'}{t} \right) \, dr \leq 12 \int_0^\infty \frac{T(r, f)}{r^{\gamma+1}} \, dr \left[\left(\pi x^{-2} \left(\frac{\omega_i}{t} \right)^{x-\gamma-1} \right) P \left(1, \frac{\omega_i}{t}, \alpha \right) +
\]

\[+ \gamma \left(\frac{\omega_i}{t} \right)^{x-\gamma-1} \Phi \left[\left(\frac{\omega_i}{t} \right)^x \right] \frac{\omega_i}{t^2} \, dt \right] + \int_0^\infty \left(\pi x^{-2} \left(\frac{\omega_i}{t} \right)^{x-\gamma-1} \right) P \left(1, \frac{\omega_i}{t}, \alpha \right) +
\]

\[+ \gamma \left(\frac{\omega_i}{t} \right)^{x-\gamma-1} \Phi \left[\left(\frac{\omega_i}{t} \right)^x \right] \frac{\omega_i}{t^2} \, dt. \]
Полученное неравенство также можно применить к $f'(z)$ вместо $f(z)$ тогда

$$
\int_{\omega}^{\infty} r^{\tau-1} \left\{ r \Re \left(r, \frac{f'}{f} \right) \right\} dr \leq 12A(\alpha, \varepsilon, \gamma) \int_{\omega}^{\infty} r^{\tau-1} T(r, f) dr \leq 24A(\alpha, \varepsilon, \gamma) \int_{\omega}^{\infty} r^{\tau-1} \{ T(r, f) + O(\ln r) \} dr.
$$

Таким образом,

$$
\lim_{\omega \to \infty} \frac{\int_{\omega}^{\infty} r^{\tau-1} \left\{ r \Re \left(r, \frac{f'}{f} \right) \right\} dr}{\int_{\omega}^{\infty} r^{\tau-1} \{ T(r, f) + O(\ln r) \} dr} \leq 24A(\alpha, \varepsilon, \gamma)
$$

и, значит,

$$
\lim_{r \to \infty} \frac{r \Re \left(r, \frac{f'}{f} \right)}{T(r, f)} = \lim_{r \to \infty} \frac{r \Re \left(r, \frac{f'}{f} \right)}{T(r, f) + O(\ln r)} \leq 24A(\alpha, \varepsilon, \gamma).
$$

Устремляя теперь $\varepsilon \to 0$ и учитывая (3.2) и (3.6), получаем:

$$
A(\alpha, \varepsilon, \gamma) \to A(\alpha, 0, \rho) = \pi \alpha^{-2} \int_{0}^{\infty} \left(\frac{1}{u} \right)^{\tau-1} P \left(1, \frac{1}{u}, \alpha \right) \frac{du}{u^{2}} +
$$

$$
+ \pi \alpha^{-2} \int_{0}^{\infty} \left(\frac{1}{u} \right)^{\tau-1} \Phi \left[\left(\frac{1}{u} \right)^{x} \right] \frac{du}{u^{2}} =
$$

$$
= \pi \alpha^{-2} \int_{0}^{\infty} s^{\tau-1} P(1, s, \alpha) ds + \pi \alpha^{-2} \int_{0}^{\infty} s^{\tau-1} \Phi(s) ds \leq \frac{\pi}{\alpha \cos \frac{\alpha}{2\rho}} + \frac{8.8\alpha}{\pi \sin 2\alpha \rho} \rho^{2}.
$$

Так как полученное неравенство справедливо при любом $\alpha < \frac{\pi}{2\rho}$, то теорема 3 доказана полностью.
§ 5. ЗАМЕЧАНИЯ

Теорема 4. Пусть Δ — сумма дефектов мероморфной функции $f(z)$ в точке нижнего порядка λ. Тогда $f(z)$ имеет хоть один дефект, удовлетворяющий условию

$$\delta (a) \geq \Delta^{2} (4K_{2}^{2} \lambda)^{-1}.$$

Эта теорема содержит результат Фукса [2].
Для доказательства мы используем рассуждение, аналогичное 12 стр. 209]. Пусть

$$\eta = \Delta^{2} (4K_{2}^{2} \lambda)^{-1}.$$

Так как из $\delta (a) < \eta$, следует

$$\sum_{x(a) < \eta} \delta (a) \eta > \delta^{2} (a),$$

$$\sum_{x(a) < \eta} \sqrt{\eta} V \delta (a) = \Delta (2K_{2} \sqrt{\lambda})^{-1} \sum_{x(a) < \eta} V \delta (a).$$

Учитывая неравенство (1.2), получаем

$$\sum_{x(a) < \eta} \delta (a) < \frac{\Delta}{2},$$

поэтому

$$\sum_{x(a) > \eta} \delta (a) > \frac{\Delta}{2}.$$

Теорема 4 доказана.

Теорема 5. Справедлива оценка

$$\sigma_{1} (\lambda) \leq K_{19} V \lambda \quad 0 < \lambda < 0.5,$$

(5.1)

где $\sigma_{1} (\lambda) = \sup S (f)$, f берется по всем мероморфным функциям нижнего порядка λ, имеющим не менее двух дефектных значений.

Из этой теоремы мы получаем следующий результат.

Теорема 6. Если мероморфная функция $f(z)$ нижнего порядка $\lambda (\lambda < 0,5)$ имеет не менее двух дефектных значений, то

$$\Delta = \sum_{(a)} \delta (a) < K_{17} \cdot \lambda^{-\frac{3}{2}}.$$

(5.2)

Доказательство. Пусть $\eta = \Delta^{2} (4K_{18}^{2} \cdot \lambda)^{-1}$, тогда, так же как и в теореме 4, находим, что существует хоть один дефект, удовлетворяющий неравенству

$$\delta (a_{m}) \geq \eta = \Delta^{2} (4 \cdot K_{18}^{2} \cdot \lambda)^{-1}.$$

(5.3)

С другой стороны, если число дефектов мероморфной функции нижнего порядка $0 < \lambda < 0,5$ не меньше двух, тогда (см. [8], [9]) при любом a

$$\delta (a) \leq 1 - \cos \pi \angle < K_{18} \cdot \lambda^{2}.$$

(5.4)

Из (5.3) и (5.4) получаем утверждение теоремы. Точность оценок (5.1) и (5.2) нам установить не удалось. Мы предполагаем, что в (5.2) показатель $\frac{3}{2}$ можно заменить на 2.
Литература

1. Р. Неванлинна. Однозначные аналитические функции. ОГИЗ. М.—Л, 1941.
4. Г. Виттих. Новейшие исследования по однозначным аналитическим функциям. Физматгиз, М., 1960.