ВЕКТОРНЫЕ РЕШЕТКИ С МОНОТОННОЙ ТОПОЛОГИЕЙ

И. И. Перепечай

Вопросами теории векторных решеток (линейных структур) занимались многие математики. Ф. Риссом еще в двадцатых годах было рассмотрено, как упорядоченное множество, линейных функционалов в пространстве непрерывных функций. В данной работе, в частности, используется его определение верхней грани для любых двух функционалов. Общую теорию решеток разработал американский математик Биркгоф, но вопросы теории векторных решеток он уделил мало внимания. Эта теория развивалась в трудах советских математиков Канторовича, Вуиха и их учеников, голландского математика Фрейденталя, японских математиков Мазда, Накано, Огасавара и других.

Начало изучению топологических векторных решеток положил М. Г. Крейн, начав с середины 30-х годов изучение нормированных пространств с выделенным в них классом (конусом) положительных элементов. В настоящее время нормирование решетки (где под нормированной решеткой понимается нормированное пространство, являющееся одновременно решеткой с мононормой) достаточно хорошо изучены. Сравнимо недавно Вуих начал изучение счетно-нормированных решеток.

В данной работе рассмотрен более широкий класс топологических векторных решеток — класс векторных решеток с мононормальной топологией, т. е. топологией, которая согласуется со структурой векторного пространства и обладает фундаментальной системой окрестностей нуля, состоящей из вполне уравновешенных множеств (определение вполне уравновешенного множества дается в работе).

Оказывается, что такая топология согласуется со структурой векторной решетки. В работе дано необходимое и достаточное условие мононормы топологии. Для случая локально выпуклых решеток доказано существование фундаментальной системы окрестностей нуля, состоящей из поглощающих вполне уравновешенных выпуклых множеств, откуда получается обобщение теоремы Вуиха (о необходимом и достаточном условии существования эквивалентной системы мононормальных полунорм в счетно-нормированном пространстве, являющимся одновременно векторной решеткой) на случай произвольных локально выпуклых пространств, являющихся одновременно векторными решетками.

В работе рассмотрено также пространство E', сопряженное к векторной решетке E с мононормой топологией. Показано, что если в E' определенным образом ввести отношение порядка и определить верхнюю грань для любых двух элементов, то E' будет векторной решеткой; кроме того, доказана теорема, из которой, в частности, следует, что топология равномерной сходимости в E' на семействе всех ограниченных множеств из E (также на семействе всех множеств, ограниченных в смысле упорядочения) является мононормой.
§ 1. ТОПОЛОГИЧЕСКИЕ ВЕКТОРНЫЕ РЕШЕТКИ

Решеткой называется упорядоченное множество \(E \), каждое непустое конечное подмножество которого имеет верхнюю и нижнюю границу. Векторной решеткой называется вещественное векторное пространство, являющееся одновременно решеткой, в котором выполняются условия:

а) если \(x \leq y \), то \(x + z \leq y + z \) при любом \(z \in E \);

б) если \(x \leq y \), то \(\lambda x \leq \lambda y \) при \(\lambda \geq 0 \).

Пусть в векторной решетке \(E \) введена топология \(\tau \). По определению топологии \(\tau \) согласуется со структурой векторной решетки, если она согласуется со структурой векторного пространства и, кроме того, в этой топологии непрерывны отображения: \((x, y) \mapsto \sup (x, y); (x, y) \mapsto \inf (x, y)\) производства \(E \times E \) в \(E \). Векторная решетка, наделенная топологией, согласующейся с ее структурой, называется топологической векторной решеткой.

Если \(E \) — векторная решетка, то в ней, в частности, для некоторых элементов \(x \) имеет место неравенство \(x \geq 0 \). Элемент \(x \in E \), удовлетворяющий этому неравенству, называется положительным элементом. Совокупность всех таких элементов будем обозначать \(E^+ \).

Теорема 1. В отдеиляемой топологической векторной решете \(E \) множество положительных элементов замкнуто (т. е. топология согласуется со структурой порядка).

Доказательство. Пусть \(\{x_n\}_{n \in \mathbb{N}} \) — обобщенная последовательность элементов из \(E^+ \) и \(x_n \to x \). Покажем, что \(x \geq 0 \). В силу непрерывности \(\sup \sup (x_n, 0) \to \sup (x, 0) = x^+ \). Так как \(x_n \geq 0 \), то \(\sup (x_n, 0) = x_n \), значит, \(x_n \to x^+ \). Пространство \(E \) отдеиляемо, поэтому предел единствен- ный, и потому \(x = x^+ \), т. е. \(x \geq 0 \), что и требовалось.

§ 2. ВЕКТОРНЫЕ РЕШЕТКИ С МОНОТОННОЙ ТОПОЛОГИЕЙ

Пусть \(E \) — векторная решетка и \(x \in E \). Элемент \(x^+ = \sup (x, 0) \) (соответственно \(x^- = \sup (-x, 0) \)) называется положительной (соответственно отрицательной) частью элемента \(x \). Элемент \(|x| = x^+ + x^- \) называется модулем элемента \(x \). Во всякой векторной решете \(E \) для любого \(x \in E \) имеет место равенство \(x = x^+ - x^- \) [1, гл. III § 4].

Назовем множество \(M \) в векторной решетке \(E \) полные уравновешенным, если оно удовлетворяет следующему условию: если \(x \in M \) и \(|y| \leq |x| \), то и \(y \in M \).

Замечание. Полное уравновешенное множество является уравновешенным.

Действительно, пусть \(x \in M \), \(|\lambda| \leq 1 \), тогда \(|\lambda x| = |\lambda| |x| \leq |x| \). В силу полной уравновешенности \(M \lambda x \in M \), т. е. \(\lambda M \subseteq M \) при всех \(\lambda \) таких, что \(|\lambda| \leq 1 \).

Топологию в векторной решете назовем монотонной, если она согласуется со структурой векторного пространства и обладает фундаментальной системой окрестностей нуля, состоящей из полных уравновешенных множеств.

Теорема 2. Монотонная топология согласуется со структурой векторной решетки.

Доказательство. Достаточно доказать непрерывность \(\inf \), так как непрерывность \(\sup \) будет следовать тогда из формул \(\inf (x, y) = = -\inf (-x, -y) \) [1, гл. III § 2]. Пусть \(\{x_n\}, \{y_n\} \) (\(x \in A, y \in B \)) — обобщенные последовательности элементов из \(E \) и \(x_n \to x, y_n \to y \).

Покажем, что \(\sup (x_n, y_n) \to \sup (x, y) \). Возьмем любую окрестность нуля \(v \) и покажем, что найдутся такие \(a \in A, \beta \in B \), что при всех \(a > a_0 \) и \(\beta > \beta_0 \) \(\sup (x_n, y_n) - \sup (x, y) \in v \). В силу монотонности топо-
логии v можно считать вполне уравновешенной. Воспользуемся неравенством $|\sup(x, z) - \sup(x, y)| < |z - y|$ [1, гл. V, § 7]. Имеем

$$|\sup(x, y) - \sup(x, y)| < |\sup(x, y) - \sup(x, y)| + |\sup(x, y) - \sup(x, y)| < |x - x| + |y - y|.$$

Выберем окрестность нуля v_1, так, чтобы $v_1 + v_1 < v$. Так как $x \to x, y \to y$, то найдутся $\alpha_0 \in A, \beta_0 \in B$ такие, что при всех $\alpha > \alpha_0, \beta > \beta_0, |x_\alpha - x| \in v_1, |y_\beta - y| \in v_1$, а $|x_\alpha - x| + |y_\beta - y| \in v, \alpha, y_\beta \in v, \alpha, y \beta \in v$. Теорема доказана.

Следующая теорема дает необходимое и достаточное условие монотонности топологии.

Теорема 3. Пусть топология T в векторной решетке E согласуется со структурой векторного пространства. Для того, чтобы T была монотонной, необходимо и достаточно, чтобы в этой топологии для любых двух обобщенных последовательностей $\{x_\alpha\}, \{y_\beta\}$ элементов из E выполнялось следующее условие: если $x_\alpha \to 0$ и $|y_\beta| < |x_\alpha|$ при каждом $\alpha \in A$, то и $y_\beta \to 0$.

Доказательство. Необходимость. Пусть T является монотонной. Это значит, что существует фундаментальная система окрестностей нуля Θ, состоящая из вполне уравновешенных множеств. Пусть $x_\alpha \to 0$ и $|y_\beta| < |x_\alpha|$ для каждого $\alpha \in A$. Для любой $v \in \Theta$ найдется такое $x_\alpha \in A$, что при $\alpha > \alpha_0, x_\alpha \in v$, а значит, и $y_\beta \in v$, т. е. $y_\beta \to 0$.

Достаточность. Пусть топология T удовлетворяет условию: если $x_\alpha \to 0$ и $|y_\beta| < |x_\alpha|$, то $y_\beta \to 0$, и пусть T — фундаментальная система окрестностей нуля топологического векторного пространства E. Возьмем $v \in \Theta$ и образуем множество

$$u = \{x \in E : y \in v (0 < y < |x|)\}.$$

Тогда u вполне уравновешено. Действительно, пусть $x \in u$ и $|y| < |x|$, тогда, если $0 < t < |y|, 0 < t < |x|$, т. е. $t \in v$, а значит, $y \in u$.

Покажем, что такие множества образуют фундаментальную систему окрестностей нуля для топологии T. Возьмем $w \in \Theta$. Для нее существует такая v, что $v \cap v \subset w$. Пусть $v \in u$. Так как $x^+, x^- \in v$, то $x = x^+ - x^- \in v \subset w$, т. е. $u \subset w$.

Осталось показать обратное, т. е., что для любого $u = \{x : y \in v (0 < y < |x|)\}$ найдется $w \in \Theta$, что $w \subset u$. Упорядочим Θ по включению и рассмотрим обобщенную последовательность $\{x_\alpha\}$, где $x_\alpha \in w (w \in \Theta)$. Очевидно, $x_\alpha \to 0$. Предположим, что любое $w \in \Theta$ не содержится в u, тогда при каждом $w \in \Theta$ существует такое $x_\alpha \in w$, что $x_\alpha \in u$. Так как $x_\alpha \in u$, то найдется такое y_β, что $0 < y_\beta < |x_\alpha|$, но $y_\beta \in v$, следовательно, $y_\beta \to 0$. В то время как из условия $x_\alpha \to 0$ и $y_\beta < |x_\alpha|$ должно следовать $y_\beta \to 0$. Противоречие показывает, что некоторое $w \in \Theta$ содержится в u, что и требовалось. Теорема доказана.

§ 3. ЛОКАЛЬНО ВЫПУКЛЫЕ РЕШЕТКИ С МОНОТОННОЙ ТОПОЛОГИЕЙ

Топологическая векторная решетка называется локально выпуклой, если она является локально выпуклым топологическим векторным пространством.

Теорема 4. Во всякой локально выпуклой решетке E с монотонной топологией существуют фундаментальная система окрестностей нуля, состоящая из поглащающих вполне уравновешенных выпуклых множеств.
Доказательство. Так как E — топологическая векторная решетка с монотонной топологией, то существует фундаментальная система окрестностей нуля Θ, состоящая из вполне уравновешенных множеств, а так как E в то же время локально выпуклое пространство, то существует фундаментальная система окрестностей нуля Θ', состоящая из выпуклых уравновешенных поглощающих множеств. Возьмем $\omega \in \Theta$ и $v \in \Theta'$ так, чтобы $v \subset \omega$, и образуем множество

$$v_0 = \bigcup_{y \in v_+} \{x \in E: |x| \leq y\},$$

gде v_+ — множество положительных элементов из v. Тогда v_0 вполне уравновешено. Действительно, пусть $x \in v_0$ и $|y| \leq |x|$, тогда $y \in v_0$, так как существует такое $t \in v_+$, что $|y| \leq t$. Далее, v_0 выпукло. Действительно, пусть $x, y \in v_0$ и $\mu \geq 0, \lambda + \mu = 1$; $x \in v_0$, значит, существует такое $z \in v_+$, что $|x| \leq z; y \in v_0$, значит, существует такое $t \in v_+$, что $|y| \leq t$, поэтому $|\lambda x + \mu y| \leq \lambda |x| + \mu |y| \leq \lambda z + \mu t$. Имеем $z, t \in v_+ \subset v$, $\lambda z + \mu t \geq 0$ и, так как v_0 выпуклое, $\lambda z + \mu t \in v_0, t. e. \lambda z + \mu t \in v_+, a$, значит, $\lambda z + \mu y \in v_0$. Покажем теперь, что множества v_0 образуют фундаментальную систему окрестностей нуля для данной топологии. Пусть $\omega \in \Theta$. Мы брали $v \in \Theta'$ так, что $v \subset \omega$. Покажем, что $v_0 \subset \omega$. Пусть $x \in v_0$, тогда существует такой $y \in v_+$, что $|x| \leq y$. Так как $y \in v_+ \subset \omega$, а ω вполне уравновешено, то $x \in \omega$, т. е. $v_0 \subset \omega$. Осталось показать обратное, т. е., что для данного v_0 существует такое $\omega \in \Theta$, что $\omega \subset v_0$. В силу непрерывности сложения для $v \in \Theta'$ существует такое $v_1 \in \Theta'$, что $v_1 + v_1 \subset \omega$, а в силу непрерывности \sup для v_1 найдется такое $v_2 \in \Theta'$, что $\sup(v_0, v_2) \subset \omega$. Возьмем вполне уравновешенную оболочку множества v_2, т. е. множество

$$v'_0 = \bigcup_{y \in v_+} \{x \in E: |x| \leq y\} = \bigcup_{y \in v_+} \{x \in E:

- \left[\sup(y, 0) + \sup(-y, 0) \right] \leq x \leq \sup(y, 0) + \sup(-y, 0) \}.$$

Так как $0, y, -y \in v_2$, то $\sup(y, 0), \sup(-y, 0) \in v_1$, а $\sup(y, 0) + \sup(-y, 0) \in v$, поэтому можно записать

$$v'_0 = \bigcup_{x \in v_+} \{x \in E: |x| \leq z\},$$

gде v'_+ — часть положительных элементов из v. Из выражений для v_0 и v_0' видно, что $v_0 \supseteq v_2$, а v_2, в свою очередь, содержит некоторое $\omega \in \Theta$, так как v_2 — окрестность нуля, а Θ — фундаментальная система окрестностей нуля. Итак для v_0 существует такое $\omega \in \Theta$, что $\omega \subset v_0$. Теорема доказана.

Полунорма p в векторной решетке E называется монотонной, если из того, что $|x| \leq |y|$, следует $p(x) \leq p(y)$.

Из теоремы 4 вытекают следующие следствия.

Следствие 1. Пусть E — локально выпуклая решетка с монотонной топологией. Тогда ее топология определяется семейством монотонных полунорм.

Действительно, полунормы $p_0(x) = \inf \{\lambda \geq 0: x \in \lambda v\}$, где v принадлежит фундаментальной системе окрестностей нуля, состоящей из поглощающих вполне уравновешенных выпуклых множеств, являются монотонными, так как если $|x| \leq |y|$ и $y \in v_0$, то в силу вполне уравновешенности $v \times x \in \lambda v$, и, следовательно, $p_0(x) \leq p_0(y)$.

Замечание. Семейство Γ монотонных полунорм определяет в векторной решетке E монотонную локально выпуклую топологию.

Это следует из того, что множества $v_{\rho} = \{x \in E: p(x) \leq \varepsilon\}$, где $\rho \in \Gamma, \varepsilon \geq 0$, поглощающие выпуклые вполне уравновешенные, а также
из того, что любое пересечение вполне уравновешенных множеств есть вполне уравновешенное множество. Вполне уравновешенность \(v_{p, r} \) следует из монотонности \(p \). Докажем последнее утверждение. Пусть \(\{E_x\} \) (\(x \in \Lambda \)) — семейство вполне уравновешенных подмножеств из \(E \). Пока-жем, что \(\bigcap_{x \in \Lambda} E_x \) — вполне уравновешенное множество. Пусть \(x \in \bigcap_{x \in \Lambda} E_x \) и \(|y| \leq |x| \).

Так как \(x \in E_x \) при каждом \(x \in \Lambda \), а каждое \(E_x \) вполне уравновешенное, то \(y \in E_x \) также при каждом \(x \in \Lambda \) и, следовательно, \(y \in \bigcap_{x \in \Lambda} E_x \), что и доказывает вполне уравновешенность \(\bigcap_{x \in \Lambda} E_x \).

Следствие 2. Пусть \(E \) — векторная решетка и одновременно локально выпуклое пространство. Для того, чтобы топология в \(E \) определялась семейством монотонных полунорм, необходимо и достаточно, чтобы в этой топологии для любых двух обобщенных последовательностей \(\{x_n\}, \{y_n\} \) (\(x \in \Lambda \)) элементов из \(E \) выполнялось следующее условие: если \(x_n \to 0 \) и \(|y_n| \leq |x_n| \) при каждом \(x \in \Lambda \), то и \(y_n \to 0 \). (В случае счетно-нормированных решеток это теорема Вулиха).

Доказательство. Необходимость. Пусть топология в \(E \) опре-деляется семейством монотонных полунорм, тогда в силу замечания то-пология будет монотонной и, следовательно, если \(x_n \to 0 \) и \(|y_n| \leq |x_n| \) при каждом \(x \in \Lambda \), то и \(y_n \to 0 \).

Достаточность. Так как \(E \) — локально выпуклое пространство и одновременно векторная решетка, то из условия теоремы следует, что \(E \) — локально выпуклая решетка с монотонной топологией. В силу след-ствия 1 ее топология определяется тогда семейством монотонных полунорм. Следствие доказано.

§ 4. ПРОСТРАНСТВО, СОПРЯЖЕННОЕ К ВЕКТОРНОЙ РЕШЕТКЕ С МОНОТОННОЙ ТОПОЛОГИЕЙ

Пусть \(E \) — векторная решетка с монотонной топологией. Рассмотрим множество \(E' \) — множество всех непрерывных линейных форм на \(E \).

Если в \(E' \) определен естественным образом операции сложения и ум-ножения на скаляр, то \(E' \) будет векторным пространством. Выделим в \(E' \) класс положительных элементов \(E'_+ = \{f : f(x) > 0 \text{ при } x > 0\} \) и вве-дем с его помощью отношение порядка, полагая \(f \geq g \), если \(f - g \in E'_+ \). Тогда относительно этого порядка \(E' \) будет векторной решеткой. Дей-ствительно, очевидно, что если \(f \leq g \), то \(\hat{f} + h \leq g + h \) при любом \(h \in E' \); если \(f \leq g \), то \(\lambda f \leq \lambda g \) при \(\lambda > 0 \). Надо еще показать, что для любых \(f, g \in E' \) существует \(\sup (f, g) \in E' \). Для этого понадобится следующая лемма:

Лемма. Во всякой векторной решетке с монотонной топологией множество, ограниченное в смысле упорядочения, ограничено (топологически).

Замечание. Множество \(M \) в векторной решетке \(E \) называется огра- ниченным в смысле упорядочения, если существуют такие \(y, z \in E \), что для всех \(x \in M \) выполняется неравенство \(y \leq x \leq z \).

Доказательство леммы. Пусть \(M \) — множество, ограниченное в смысле упорядочения, тогда существует \(y \in E \), такое, что для всех \(x \in M \) \(|x| \leq y \) [1, гл. III, § 4]. Так как одноточечное множество ограничено, то для любой окрестности нуля \(n \) существует такое \(\lambda > 0 \), что \(y \in \nu \). Причем в силу монотонности топологии \(\nu \) можно считать вполне-
уравновешенной. Так как \(|x| \leq y \), а \(y \in \lambda v \), то и \(x \in \lambda v \). Это справедливо для любого \(x \in M \) и, следовательно, \(M \subseteq \lambda v \), т. е. \(M \) ограничено. Лемма доказана.

Пусть теперь \(f, g \in E' \) и \(x \geq 0 \). Опишем

\[
h(x) = \sup_{x_1 + x_2 = x, \ x_1, x_2 \geq 0} (f(x_1) + g(x_2)).
\]

Покажем, что \(h \) аддитивно, положительно однородно, непрерывно в нуле и \(h = \sup (f, g) \). Множество \(M = \{ y \in E : 0 \leq y \leq x \} \) ограниченно в смысле упорядочения, поэтому (в силу леммы) оно ограничено. Так как \(f \) и \(g \) непрерывны, то множества \(f(M) \) и \(g(M) \) ограничены. Ограниченно также и множество \(f(M) + g(M) \). В \(R \) каждое ограниченное множество имеет верхнюю грань, поэтому \(\sup \) в выражении для \(h(x) \) существует, и, значит, применима соответствующая лемма [1, гл. VII, § 2], из которой следует аддитивность \(h \). Пусть теперь \(\lambda > 0 \),

\[
h(\lambda x) = \sup_{x_1 + x_2 = \lambda x, \ x_1, x_2 \geq 0} (f(x_1) + g(x_2)) = \sup_{x_1 + x_2 = x, \ x_1, x_2 \geq 0} (f(\lambda x_1) + g(\lambda x_2)) = \lambda h(x),
\]

т. е. \(h \) положительно однородно.

Для доказательства непрерывности \(h \) в нуле покажем, что для любого \(\varepsilon > 0 \) существует окрестность нуля \(v \) в \(E \) такая, что для любого \(x \in v_+ \), где \(v_+ \) — множество положительных элементов, принадлежащих \(v \), \(|h(x)| < \varepsilon \). Так как \(f \) и \(g \) непрерывны, то для любого \(\varepsilon > 0 \) существует окрестность нуля \(v \) в \(E \) такая, что для любого \(x \in v \), \(|f(x)| < \varepsilon \), \(|g(x)| < \varepsilon \), причем \(v \) можно считать вполне уравновешенной. Покажем, что \(|h(x)| < \varepsilon \) для любого \(x \in v_+ \). Пусть \(x \in v_+ \), тогда \(x \in v \), а так как \(0 \leq x_1 < x, 0 \leq x_2 < x \), то \(x_1, x_2 \in v \), и, следовательно, \(|f(x_1)|, |g(x_2)| < \varepsilon \), \(|f(x_1) + +g(x_2)| < |f(x_1)| + |g(x_2)| < \frac{2\varepsilon}{3} \), значит, \(|h(x)| < \varepsilon \). Итак, для любого \(x \in v_+ \) \(|h(x)| < \varepsilon \), что и требовалось.

Покажем теперь, что \(h = \sup (f, g) \). Из определения \(h \) следует, что \(h(x) \geq f(x_1) + g(x_2) \) для любых \(x_1, x_2 \geq 0 \) таких, что \(x_1 + x_2 = x \). В силу произвольности \(x_1, x_2 \), полагая сначала \(x_1 = x, x_2 = 0 \), потом \(x_1 = 0, x_2 = x \), получим \(h(x) \geq f(x) \) для всех \(x \geq 0 \), т. е. \(h \geq f \), и \(h(x) \geq g(x) \) для всех \(x \geq 0 \), т. е. \(h \geq g \). Пусть теперь \(k \) — любая другая аддитивная форма на \(E \), удовлетворяющая условию: \(k \geq f, k \geq g \). Покажем, что \(h \leq k \). Действительно, возьмем \(x_1 + x_2 = x, x_1, x_2 \geq 0 \), тогда \(f(x_1) + +g(x_2) \leq k(x_1) + k(x_2) = k(x) \).

Взяв в левой части \(\sup \) по всевозможным разбиениям \(x \) на сумму \(x_1 + x_2 = x \), получим \(h(x) \leq k(x) \), т. е. \(h = \sup (f, g) \). Распространим теперь \(h \) на все \(E \). Для любого \(x \in E \) положим

\[
H(x) = h(x^+) - h(x^-).
\]

Ясно, что при \(x \geq 0 \) \(H(x) = h(x) \). Единственность и аддитивность \(H \) следуют из соответствующей леммы [1, гл. VIII, § 1]. Осталось показать однородность \(H \) и непрерывность. Пусть \(\lambda > 0 \), тогда

\[
H(\lambda x) = h((\lambda x)^+) - h((\lambda x)^-) = \lambda h(x^+) - \lambda h(x^-) = \lambda H(x).
\]

Пусть теперь \(\lambda < 0 \), тогда

\[
H(\lambda x) = h((-\lambda x)^+) - h((-\lambda x)^-) = -h((-\lambda x)^+) - h((-\lambda x^+) = \lambda H(x),
\]
т. е. H однородно. Здесь воспользовались соотношениями [1, гл. III, § 4]

$$
\lambda > 0: (\lambda x)^+ = \lambda x^+; \quad (\lambda x)^- = \lambda x^-;
$$

$$
\lambda \leq 0: (\lambda x)^+ = -\lambda x^-, \quad (\lambda x)^- = -\lambda x^+.
$$

Для доказательства непрерывности H достаточно доказать непрерывность H в нуле. Покажем, что для любого $\varepsilon > 0$ найдется окрестность нуля v в E такая, что $|H(x)| < \varepsilon$ для всех $x \in v$.

В силу непрерывности h в нуле для любого $\varepsilon > 0$ существует окрестность нуля ν в E такая, что $|h(x)| < \frac{\varepsilon}{2}$ для всех $x \in \nu$, причем ν можно считать вполне уравновешенной (в силу монотонности топологии). Покажем, что $|H(x)| < \varepsilon$ для всех $x \in \nu$. Действительно, пусть $x \in \nu$, тогда $x^+, x^- \in \nu$, так как ν вполне уравновешено, и, следовательно,

$$
|H(x)| = |h(x^+) - h(x^-)| \leq |h(x^+)| + |h(x^-)| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon,
$$

т. е. H непрерывно в нуле, а в силу линейности и всюду на E. Итак, мы доказали, что для любых $f, g \in E'$ существует $\sup (f, g) \in E'$, т. е. справедлива следующая теорема:

Теорема 5. Пространство, сопряженное к векторной решетке с монотонной топологией, является векторной решеткой.

§ 5. Σ-ТОПОЛОГИЯ В СОПРЯЖЕНОМ К ВЕКТОРНОЙ РЕШЕТКЕ С МОНОТОННОЙ ТОПОЛОГИЕЙ

Пусть E и F — топологические векторные пространства, и $L(E, F)$ — пространство всех непрерывных линейных отображений из E в F. Пусть Σ — множество ограниченных подмножеств из E. Рассмотрим такие множества в $L(E, F)$: $T(M, \nu) = \{f : f(M) \subseteq \nu\}$, где $M \in \Sigma$, а ν — окрестность нуля в F. Эти множества являются окрестностями нуля для некоторой топологии в пространстве $L(E, F)$, согласующейся с его структурой. Такие топологии в $L(E, F)$ называются Σ-топологиями.

Пусть E — векторная решетка с монотонной топологией. Как уже доказано, E' является векторной решеткой. В E', которое определяется как $L(E, \mathbb{R})$, можно рассматривать различные Σ-топологии. Справедлива следующая теорема:

Теорема 6. Пусть E — векторная решетка с монотонной топологией, и Σ — множество ограниченных подмножеств из E, удовлетворяющее усло- вию: если $M \in \Sigma$, то и вполне уравновешенная оболочка множества M принадлежит Σ. Тогда Σ-топология в E' является монотонной.

Доказательство. Всевозможные конечные пересечения множеств вида $\omega_{k, M} = \{f \in E' : |f(x)| < \varepsilon (x \in M)\}$, где $M \in \Sigma$, образуют фундаментальную систему окрестностей нуля для данной Σ-топологии. Покажем, что все возможные конечные пересечения множеств вида $\omega_{k, M} = \{f \in E' : |f(\{x\})| < \varepsilon (x \in M)\}$, где $M \in \Sigma$, тоже образуют фундаментальную систему окрестностей нуля для этой топологии. Для этого достаточно показать, что для любого $\omega_{k, M}$ существует $\omega_{k, N}$, что $\omega_{k, M} \subseteq \omega_{k, N}$ и, наоборот, для любого $\omega_{k, N}$ существует $\omega_{k, M}$, что $\omega_{k, M} \subseteq \omega_{k, N}$.

Итак, пусть дано $\omega_{k, M}$. Тогда $\omega_{k, M} \subseteq v_{k, M}$, что следует из неравенства

$$
|f(x)| \leq \sup_{|x'| < |x|} |f(x')| = |f(|x|)|.
$$
Пусть теперь дано \(\omega, M \). Тогда \(u, M^* \subseteq \omega, M \), (где \(M^* \) — вполне уравновешенная оболочка множества \(M \), которая по условию теоремы принадлежит \(\Sigma \)). Действительно, пусть \(f \in u, M^* \), тогда для всех \(x \in M^* \) имеем \(|f(x)| \leq \varepsilon \). Для \(x \in M \) имеем

\[
|f|(|x|) = \sup_{|x'| < |x|} |f(x')| \leq \varepsilon,
\]

так как если \(x \in M \), то \(x \in M' \) и (в силу вполне уравновешенности \(M' \)) \(x' \in M', \) а потому \(|f(x')| \leq \varepsilon \) для всех \(x' \) таких, что \(|x'| \leq |x| \), и значит, \(|f|(|x|) \leq \varepsilon \), т.е. \(f \in \omega, M \).

Так как пересечение вполне уравновешенных множеств есть вполне уравновешенное множество, то для окончания доказательства теоремы осталось показать, что \(\omega, M \) вполне уравновешено. Покажем это. Пусть \(f \in \omega, M \) и \(|g| \leq |f| \), тогда \(|g|(|x|) \leq |f|(|x|) \leq \varepsilon \) для всех \(x \in M \), значит, \(g \in \omega, M \), т.е. \(\omega, M \) вполне уравновешено. Теорема доказана.

Замечание. Если \(M^* \) — вполне уравновешенная оболочка множества \(M \), то \(\omega, M = \omega, M^* \).

Действительно, так как \(M \subseteq M' \), то \(\omega, M^* \subseteq \omega, M \). Покажем обратное включение. Пусть \(f \in \omega, M \). Это значит, что \(|f|(|x|) \leq \varepsilon \) для всех \(x \in M \). Если \(x \in M' \), то существует \(y \in M \), что \(|x| \leq |y| \), и значит, \(|f|(|x|) \leq |f|(|y|) \leq \varepsilon \), т.е. \(f \in \omega, M \), что и требовалось.

Заметим далее, что если \(M \) вполне уравновешенно, то \(u, M = \omega, M \), что непосредственно из доказательства последней теоремы. Поэтому если \(\Sigma \) удовлетворяет условию: если \(M \in \Sigma \), то в \(u, M \) уравновешенная оболочка множества \(M \) принадлежит \(\Sigma \), то всем не возможные конечные пересечения множеств \(u, M^* \), где \(M^* \) — вполне уравновешенная оболочка множества \(M \in \Sigma \), образуют фундаментальную систему окрестностей нуля для данной \(\Sigma \)-топологии, ибо \(u, M = \omega, M = \omega, M^*, \) а \(\omega, M \) по доказанному образуют фундаментальную систему окрестностей нуля для данной \(\Sigma \)-топологии, т.е. получаем следующее следствие:

Следствие 1. В условиях теоремы 3 топология равномерной сходимости на множествах из \(\Sigma \) совпадает с топологией равномерной сходимости на вполне уравновешенных оболочках множеств из \(\Sigma \).

Следствие 2. Топология равномерной сходимости в сопряженном к векторной решетке \(E \) с монотонной топологией на семействе всех ограниченных (соответственно на семействе всех ограниченных в смысле упорядочения) множеств из \(E \) является монотонной.

Доказательство. Достаточно показать, что вполне уравновешенная оболочка ограниченного (соответственно ограниченного в смысле упорядочения) множества ограничена (соответственно, ограничена в смысле упорядочения) и сосыться на теорему 6. Пусть \(M \) — ограниченное множество, тогда для любой окрестности нуля \(v \) в \(E \) \((v \) можно считать вполне уравновешенной) найдется \(\lambda > 0 \) такое, что \(M \subseteq \lambda v \). Пусть \(M^* \) — вполне уравновешенная оболочка множества \(M \), т.е. \(M^* = U_{\varepsilon \in M} \{x \in E : |x| < |y| \} \), и пусть \(x \in M' \), тогда существует такой \(y \in M \), что \(|x| < |y| \). Так как \(y \in \lambda v \), то и \(x \in \lambda v \), т.е. \(M^* \subseteq \lambda v \) и ограниченность \(M^* \) доказана.

Пусть теперь \(M \) — множество, ограниченное в смысле упорядочения. Тогда существует такой \(y \in E \), что \(|x| < y \) для всех \(x \in M \). Пусть \(z \in M' \) тогда существует такой \(x \in M \), что \(|z| < |x| \), и значит, \(|z| < y \), т.е. \(M' \) ограничено в смысле упорядочения [1, гл. III § 4].
ЛИТЕРАТУРА

2. Н. Бурбаки. Общая топология. Основные структуры. Физматгиз, М., 1958.

Поступила 28 мая 1968 г.