ОБ ЭФФЕКТИВНОМ РЕШЕНИИ ЗАДАЧИ МАКСИМИЗАЦИИ ЛИНЕЙНОГО ФУНКЦИОНАЛА

И. Я. Крачевский

Рассматривается вопрос об эффективном решении задачи о наибольшем значении линейного функционала

\[I(f) = \int_0^T h(t) \cdot f(t) \, dt \] (1)

на множестве \(M \) всех дифференцируемых функций \(f(t) \), подчиненных следующим требованиям:

\[|f(t)| < m_0, \quad |f'(t)| < m_1, \quad |f'(t) - f'(s)| < m_2 |t - s|. \] (2)

Здесь \(h(t) \) — известная непрерывная функция времени \(t \), имеющая конечное число точек перемен знака в \([0, T]\).

Задача (1) — (2) в общей постановке является нелокальной: изменение функции \(h(t) \) в небольшом интервале влечет за собой изменение экстремали в отдаленных от этого интервала точках [1]. Это обстоятельство затрудняет ее аналитическое эффективное решение. В то же время с помощью одного только метода динамического программирования не удается реализовать достаточно простую вычислительную схему решения данной задачи.

В настоящей статье рассматривается комбинированный метод, основанный на применении метода функциональных уравнений Р. Белмана [2], [3] и на использовании свойств максимизирующих функций, изученных в [1].

1. Рассмотрим задачу максимизации функционала

\[I_h(f) = \int_{t_0}^{t_1} h(t) \cdot f(t) \, dt, \quad f(t) \in M \] (3)

при дополнительных ограничениях на функцию \(f(t) \):

\[f(t_j) = a_j, \quad j = 0, 1, \ldots, k \]
\[\left(-1\right)^k \cdot f'(t_k) \leq \left(-1\right)^k \cdot b_k \] (4)

где \(t_j (j = 1, 2, \ldots n - 1) — точки перемен знака h(t); t_0 = 0, t_n = T. \)
Для определенности будем полагать, что \(h(t) > 0 \) в четных интервалах \([t_k, t_{k+1}].\)
Основываясь на теореме 1 о форме максимизирующей функции (см. [1]), мы можем привести задачу (3)—(4) к задаче о наибольшем значении функционала

$$I_k(f_m) = \int_{t_i}^{t_k} h(t) f_m(t) dt, \quad f_m(t) \in M,$$

на множестве L всех кусочно-квадратичных функций $f_m(t)$, удовлетворяющих условию (4) и равных

$$f_m(t) = \begin{cases} \varphi_+(t) = a_i + \int_{t_i}^{t} \Phi_+(\tau) d\tau, & t = 2, 4, \ldots \\ \varphi_-(t) = a_i + \int_{t_i}^{t} \Phi_-(-\tau) d\tau, & t = 1, 3, \ldots \end{cases} (5)$$

Здесь $\Phi_+(t)$ и $\Phi_-(t)$ — кусочно-линейные функции, определенные соответственно в каждом четном и нечетном интервале $[t_i, t_{i+1}]$, (см. [1]).

Поставим вопрос о поведении максимизирующей функции в точках $t = t_i, i = 0, 1, \ldots, k$. Оказывается, что данные функции обладают одним важным свойством, существенно облегчающим эффективное решение задачи, а именно:

Теорема 1. Если множество L не пусто, то:

1) Существует функция $f_m(t) \in L$, у которой произведена в точках $t = t_i, i = 0, 1, \ldots, k$ принимает максимальное для данного множества значение при четном и минимальное — при нечетном;
2) Данная функция реализует наибольшее значение функционала $I_k(f_m)$ на множестве L.

Доказательство. Применим метод индукции.

Пусть $k = 1$. Рассмотрим множество $L[t_0, t_1]$ всех функций $f_m(t)$, удовлетворяющих условиям:

$$f_m(t_0) = a_0, \quad f_m(t_1) = a_1, \quad f_m'(t_1) > b_1.$$

Пусть далее $L_1[t_0, t_1]$ и $L_2[t_0, t_1] — подмножества всех функций $f_m(t) \in L$, обладающих следующими свойствами: $f_m(t) \in L_1$ при $f_m(t_0) = b_0$, $f_m(t) \in L_2$ при $f_m'(t_1) = b_1$. Здесь $b_0 = \sup f_m(t_0), f_m'(t_1) = \inf L[t_0, t_1]$. По условию теоремы оба подмножества L_1 и L_2 непустые. Покажем, что первое утверждение теоремы о существовании функции $f_0(t) \in L[t_0, t_1]$ удовлетворяющей требованиям

$$f_0(t_0) = b_0, \quad f_0'(t_1) = b_1,$$

содержит. Рассуждая от противного, допустим, что такой функции на $L[t_0, t_1]$ не существует. Это произойдет в том случае, если будет

$$\int_{t_0}^{t_1} f_m'(t) dt < \int_{t_0}^{t_1} \Phi_+(t) dt < a_1 - a_0,$$

либо когда

$$\int_{t_0}^{t_1} f_m'(t) dt > \int_{t_0}^{t_1} \Phi_-(t) dt > a_1 - a_0.$$
Здесь

\[\Phi_m(t) = \min \{ b_0 + m_2 (t - t_0); m_1; b_1 + m_2 (t_1 - t) \} \]

и

\[\Phi_m(t) = \max \{ b_0 - m_2 (t - t_0); -m_1; b_1 - m_2 (t_1 - t_0) \} . \]

В первом случае мы приходим к противоречию с условием существования непустого множества \(L_1 \subseteq L [t_0, t_1] \). Точно так же в втором случае неизбежно противоречие с условием существования непустого множества \(L_2 \subseteq L [t_0, t_1] \). Следовательно, функция \(f_0(t) \in L [t_0, t_1] \) существует, а в силу леммы 1 и следствия 1 (см. [1]) данная функция будет удовлетворять второму утверждению теоремы. Следовательно, теорема справедлива для \(k = 1 \).

2°. Пусть теорема верна для \(k = j \). Докажем, что она верна и для \(k = j + 1 \). Для определённости положим \(j \) четным. Пусть \(Y_j \) и \(Y'_j \) есть множества всех значений производных \(f_m(t) \), которым соответствуют непустые множества функций \(f_m(t) : L [t_0, t_j] \) и \(L [t_j, t_{j+1}] \). Пусть далее \(\text{Sup} f_m(t) = b_j \), \(f_m(t) \in L [t_0, t_{j+1}] \). Очевидно число \(b_j \) будет являться точкой вершины границей пересечения множеств \(Y_j \cap Y'_j \). Тогда по аналогии с 1° мы можем утверждать, что существует функция \(f_0(t) \in L [t_j, t_{j+1}] \), обладающая следующими свойствами:

\[f_0(t) = b_j \geq f_m(t) \text{ и } f'_0(t_{j+1}) = b_{j+1} \leq f'_m(t_{j+1}) , \]
\[f_m \in L [t_j, t_{j+1}] , \]
\[\text{Sup} \int_{t_j}^{t_{j+1}} h(t) \cdot f_m(t) \, dt = \int_{t_j}^{t_{j+1}} h(t) \cdot f_0(t) \, dt . \]

С другой стороны, если теорема верна для \(k = j \), то на множестве функций \(f_m(t) \in L [t_0, t_j] \), удовлетворяющих условию \(f'_m(t_i) < b_j \), существует функция \(f_j(t) \), удовлетворяющая всем требованиям теоремы в точках \(t_i \), \(i = 1, 2, \ldots, j \), и реализующая наибольшее значение функционала \(f_j(f_m) \), т. е.

\[\text{Sup} \int_{t_0}^{t_j} h(t) f_m(t) \, dt = \int_{t_0}^{t_j} h(t) f_j(t) \, dt . \]

Образуем функцию

\[f_{j+1}(t) = \left\{ \begin{array}{ll} f_j(t); & t_0 \leq t < t_j , \\ f_0(t); & t_j \leq t \leq t_{j+1} . \end{array} \right. \]

По определению \(f_j(t) \) и \(f_0(t) \) будем иметь

\[f_j(t_i) = a_i , \quad f'_j(t_i) = f'_0(t_i) = B_j . \]

Но согласно (6) и (9) функция \(f_{j+1}(t) \) будет принадлежать некоторому множеству \(L [t_0, t_{j+1}] \) и отвечать всем требованиям теоремы, т. е.

\[(-1)^i \cdot f_{j+1}(t) \geq (-1)^{i'} \cdot f'_m(t_i) , \quad i = 0, 1, \ldots, j + 1 , \quad f_m \in L [t_0, t_{j+1}] . \]

Имея в виду (7) и (8), получим

\[\text{Sup} \int_{t_0}^{t_{j+1}} h(t) f_m(t) \, dt = \int_{t_0}^{t_{j+1}} h(t) f_{j+1}(t) \, dt . \]
Доказательство для \(j \) нечетных проводится аналогично. Теорема доказана.

Рассмотрим множество \(W_k \) функций \(f_m(t) \in L[t_k, t_{k+1}] \), подчиненных требованиям

\[
\text{Sup } f'_m(t_k) = B_k, \quad \text{inf } f'_m(t_k) = C_k, \quad t = k, \quad k + 1.
\]

Данное множество будет не пусто при следующих условиях:

а) \(|B_k| < b_k^* \), \(|C_k| < b_k^* \);

б) \[\int_{t_k}^{t_{k+1}} \min \Phi_m(t) \ dt < a_{k+1} - a_k \leq \int_{t_k}^{t_{k+1}} \max \Phi_m(t) \ dt, \]

где

\[
\min \Phi_m(t) = \max \{ C_k - m_2(t - t_k); \quad -m_1; \quad b_{k+1} - m_2(t_{k+1} - t) \}
\]

и

\[
\max \Phi_m(t) = \min \{ B_k + m_2(t - t_k); \quad m_1; \quad b_{k+1} + m_2(t_{k+1} - t) \}.
\]

Здесь

\[b_k^* = V/2m_2(m_0 - \varepsilon |a_k|). \]

Если не будет выполнено условие а), то мы придем к противоречию: \(|f(t)| > m_0 \) в точке \(t = t_k + \frac{f'(t_k)}{m_2} \) или в точке \(t = t_k - \frac{f'(t_k)}{m_2} \). Второе условие очевидно.

Выделим из \(W_k \) подмножество \(U_k \) всех функций \(f_m(t) \), у которых производные в точке \(t = t_k \) принимают следующие значения:

\[f_m(t_k) = \begin{cases} B_k & \text{при } k = 0, 2, \ldots, \\ C_k & \text{при } k = 1; 3, \ldots. \end{cases} \]

В свою очередь, подмножество \(U_k[t_k, t_{k+1}] \) будет не пусто, если выполнены неравенства

\[\int_{t_k}^{t_{k+1}} \max \Phi_m(t) \ dt < a_{k+1} - a_k \leq \int_{t_k}^{t_{k+1}} \max \Phi_m(t) \ dt, \]

где

\[\max \Phi_m(t) = \max \{ B_k - m_2(t - t_k); \quad -m_1; \quad b_{k+1} - m_2(t_{k+1} - t) \}. \]

Графики функций \(\min \Phi_m(t) \), \(\max \Phi_m(t) \), \(\min \Phi_m(t) \) и \(\max \Phi_m(t) \) показаны на рисунке.

Непосредственно из теоремы 1 вытекает

Следствие 1. Пусть в промежутке \([t_k, t_{k+1}] \) существует неустойчивое множество функций \(W_k \). Если при этом подмножество \(U_k \subseteq W_k \) не пусто, то наибольшее значение функционала

\[\int_{t_k}^{t_{k+1}} h(t) \cdot f_m(t) \ dt, \quad f_m \in L[t_k, t_{k+1}] \]

доставляет функция \(f_m \subseteq U_k \). В противном случае наибольшее значение функционала реализуется на функциях \(f_m(t) \in W_k \), у которой производная равна \(\Phi_m(t) \) при \(k \) четном и \(\Phi_m(t) \) при \(k \) нечетном.
2°. Теперь перейдем непосредственно к эффективному решению задач (3) — (4). С этой целью обратимся к методу функциональных уравнений Р. Беллмана. Данный метод достаточно эффективен в одномерных задачах. В рассматриваемой двумерной задаче при больших значениях T процесс вычислений с помощью одного лишь только метода функциональных уравнений остается весьма громоздким. Его дальнейшее упрощение неизбежно связано с необходимостью понижения размерности и сокращения числа шагов в многошаговом процессе решения. Это оказывается возможным в случае комбинированного решения, основанного на применении метода функциональных уравнений в сочетании с информацией аналитического характера о свойствах максимизирующей функции.

Согласно основной теореме 1 (см. [1]) наибольшее значение функционала (1) реализуется на множестве кусочно-квадратичных функций $f_m(t)$. Каждая из функций $\varphi_+(t)$ и $\varphi_-(t)$ однозначно определяется заданием краевых условий $\varphi_+(t_i)=\alpha_i$, $\varphi_-(t_i)=\beta_i$ ($i=k, k+1$). Следовательно, задача максимизации функционала (1) — (2) сводится к определению наибольшего значения функции $2n$ переменных a_k и b_k, т. е.

\[
\max I(f) = \max \sum_{i=1}^{a_n} l(a_i, \ldots, a_n, b_i, \ldots, b_n). \tag{12}
\]

Определим функцию $I_k(a_k, b_k)$, равную

\[
I_k(a_k, b_k) = \max \int_{t_k}^{t_{k+1}} h(t) f_k(t) \, dt,
\]

где L_k есть множество всех функций $f_m(t)$, удовлетворяющих следующим требованиям:

$\varphi_+(t_k) = a_k$, $\varphi_-(t_k) = b_k$.

По аналогии с (12) можем записать

\[
I_k(a_k, b_k) = \max \sum_{i=1}^{a_{k-1}} l(a_k, b_k, a_i, \ldots, a_{k-1}, b_i, \ldots, b_{k-1}).
\]

Тогда, воспользовавшись свойством аддитивности определенного интеграла, мы приходим к функциональному уравнению

\[
I_k(a_k, b_k) = \max \left[I_{k-1}(a_{k-1}, b_{k-1}) + \int_{t_{k-1}}^{t_k} h(t) \cdot f_k(t) \, dt \right]. \tag{13}
\]

Для построения вычислительной схемы заменим непрерывные множества значений $f_k(t_k) = a_k$, $(a_k \in [-m_0, m_0])$ и $f_k(t_k) = b_k$, $(b_k \in [-b_k^*, b_k^*])$ дискретными множествами

\[-m_0, -m_0 + \Delta, \ldots, -m_0 + k\Delta, \ldots, m_0, -b_k^*, -b_k^* + \Delta, \ldots, -b_k^* + k\Delta, \ldots, b_k^*; \]

Допустим, что для каждой пары значений a_{k-1} и b_{k-1} определен интеграл $I_{k-1}(a_{k-1}, b_{k-1})$. Построим вычислительную схему для определения $I_k(a_k, b_k)$, применив доказанную выше теорему 1. Согласно теореме 1
необходимо рассмотреть множество L_k, функции $f_m(t_k)$, удовлетворяющих условиям

$$f_k(t_k) = a_{k-1}, \quad f_k(t_k) = b_{k-1} \text{ и } f_{k-1}(t_{k-1}) = a_{k-1}$$

и вычислить правую часть выражения (1) при наименьшем (наибольшем) значении производной $f_k(t_{k-1})$ при k четном (k — нечетном); при котором множество L_k не пусто. Далее в соответствии с общим планом решения функциональных уравнений Р. Беллмана необходимо для данных значений a_k и b_k перебрать все значения выражения (13) для всех a_{k-1} ($-m_0, -m_0 + 1, \ldots + m_0$), для которых соответствующее множество L_k не пусто, и отобрать наиболее. Подобные вычисления должны быть повторены для всех комбинаций a_k и b_k. Таким образом, при использовании основной теоремы о форме максимизирующей функции и теоремы 1 о свойствах максимизирующей функции на границах интервалов знакопостоянства ядра $h(t)$ число интервалов решения становится минимально возможным, равным числу интервалов знакопостоянства ядра. При этом данная задача из двумерной становится «полугоморфной», т. е. если n_1 — число переборов значений производных $f_k(t_k)$, а n_2 — число переборов значений самой функции $f_k(t_k)$, то наибольшее число шагов в каждом интервале равно $n_1 \cdot n_2$ вместо $n_1^2 \cdot n_2^2$ в двумерной задаче.

ЛITERATURA

1. И. Я. Кричевский. О накоплении возмущений в линейных системах. Сб. «Теория функций, функциональный анализ и их приложения», вып. 3. Изд-во ХГУ, Харьков, 1966.

Поступила 26 марта 1966.