К ТЕОРИИ ЛИНЕЙНЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ
С ПЕРИОДИЧЕСКОЙ ПРАВОЙ ЧАСТЬЮ
И РАСПРЕДЕЛЕННЫМИ ОТКЛОНЕНИЯМИ АРГУМЕНТА

Н. А. Кулеско

Рассматривается применение теории линейных интегральных уравнений Фредгольма к решению и исследованию устойчивости решений линейных дифференциальных уравнений с периодической правой частью и распределенными запаздываниями аргумента. Используется общее представление решения — обобщение теоремы Флоха, данное в работах [1—3]. Некоторые используемые приемы близки к приемам работ [4; 5], но применяются для более общего класса уравнений. Выводится приближенный критерий устойчивости решений, указываются способы построения частных решений. В статье повторяются некоторые результаты работ [6, 7], полученные иным способом. Сведение к интегральным уравнениям Фредгольма разных классов линейных и нелинейных дифференциальных уравнений с отклоняющимся аргументом может оказаться полезным и для исследования других вопросов.

1. Рассматривается система дифференциальных уравнений

\[
\frac{dY(t)}{dt} = \int_0^t (dH(s)) Y(t - s) + \mu \int_0^t [d\Xi(t, s)] Y(t - s) + F(t) (t = \text{const} > 0, -\infty < t < \infty). \tag{1.1}
\]

Здесь \(Y(t)\) — \(n\)-мерный вектор, \(H(s)\) \(n \times n\) матрица, не зависящая от \(t\), \(\Xi(t, s)\) периодическая по \(t\) \(n \times n\) матрица с периодом \(2\pi\).

Введем нормы вектора \(Y = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}\) и матрицы \(H = \|\eta_{ml}\|\) по формулам

\[
|Y| = \max_m |y_m|, \quad |H| = \max_m \sum_{m=1}^n |\eta_{ml}| (m = 1, \ldots, n). \tag{1.2}
\]

Предполагается, что матрицы в (1.1) удовлетворяют условиям

\[
|\hat{V} H(s)| < \infty, \quad \max_t |\hat{V} \Xi(t, s)| < \infty,
\]

\[
\max_t |\hat{V} \Xi(t + s, s)| < \infty. \tag{1.3}
\]
Параметр $\mu$ может принимать комплексные значения. Неоднородная часть $F(t)$ представляется в виде

$$ F(t) = e^{\alpha t} C(t), \quad \alpha = \text{const}, $$

где $C(t)$ — периодический вектор периода $2\pi$, разложимый в равномерно сходящийся ряд Фурье.

Рассмотрим систему (1.1) при $\mu = 0$, $\alpha = 0$.

$$ \frac{dY(t)}{dt} = \int_0^t [dH(s)] Y(t - s) + C(t). $$

Будем искать ее периодическое решение $Y_0(t)$ периода $2\pi$. Для этого представим вектор $C(t)$ в виде ряда Фурье.

$$ C(t) = \sum_{r=-\infty}^{\infty} C_r e^{ir\omega t}, \quad C_r = \frac{1}{2\pi} \int_0^{2\pi} C(s) e^{-irs} ds. $$

Если выполняется условие отсутствия резонанса

$$ \det [irE - \int_0^1 e^{-irs} dH(s)] \neq 0 \quad (r = 0, \pm 1, \pm 2, \ldots), $$

то периодическое решение существует и имеет вид

$$ Y_0(t) = \sum_{r=-\infty}^{\infty} \left[ irE - \int_0^1 e^{-irs} dH(s) \right]^{-1} C_r e^{ir\omega t}. $$

Здесь и далее $E$ — единичная матрица. (Сходимость ряда (1.8) будет доказана в пункте 2).

$$ Y_0(t) = \sum_{r=-\infty}^{\infty} \left[ irE - \int_0^1 e^{-irs} dH(s) \right]^{-1} \frac{1}{2\pi} \int_0^{2\pi} C(s) e^{-irs} dse^{i\omega t} = $$

$$ = \int_0^{2\pi} \sum_{r=-\infty}^{\infty} \left[ irE - \int_0^1 e^{-irs} dH(u) \right]^{-1} e^{ir\omega (t-u)} C(s) ds. $$

Если ввести обозначение

$$ K(t) = \int_0^{2\pi} \sum_{r=-\infty}^{\infty} \left[ irE - \int_0^1 e^{-irs} dH(s) \right]^{-1} e^{ir\omega t}, $$

то из (1.9) следует, что

$$ Y_0(t) = \int_0^{2\pi} K(t-s) C(s) ds. $$

Далее будет показано, что матрица $K(t)$ ограничена, непрерывна за исключением точек $t = 2\pi k (k = 0, \pm 1, \ldots)$, где она имеет разрывы I рода.
Одновременно с (1.1) будем рассматривать соответствующую однородную систему уравнений

$$
\frac{dY(t)}{dt} = \int_0^t \left[ d\Phi(s) \right] Y(t - s) + \mu \int_0^t [d_s \Xi(t, s)] Y(t - s).
$$

(1.12)

Из работ [1—3] следует, что однородная система дифференциальных уравнений (1.12) имеет решение вида

$$
Y_j(t) = e^{p_j t} X_j(t),
$$

(1.13)

где $X_j(t)$ — периодический вектор периода $2\pi$. Числа $p_j$ будем называть характеристическими показателями. Они определяют устойчивость решений. Именно, при $\Re p < 0$ решения асимптотически устойчивы. Будем искать частное решение системы (1.12) в виде

$$
Y(t) = e^{pt} X(t), \quad X(t + 2\pi) = X(t).
$$

(1.14)

Уравнения для $X(t)$ принимают вид

$$
\frac{dX(t)}{dt} = -pX(t) + \int_0^t e^{-ps} \left[ d\Phi(s) \right] Y(t - s) + \mu \int_0^t e^{-ps} [d_s \Xi(t, s)] Y(t - s).
$$

(1.15)

Член, содержащий множитель $\mu$ в (1.15), является периодическим по $t$ с периодом $2\pi$. Применяя формулы (1.5), (1.11) к системе (1.15), где

$$
C(t) = \mu \int_0^t e^{-ps} [d_s \Xi(t, s)] Y(t - s),
$$

(1.16)

получим систему интегральных уравнений

$$
X(t) = \mu \int_0^{2\pi} K(t - s, \rho) e^{-\rho u} [d_s \Xi(s, u)] X(s - u) \, ds.
$$

(1.17)

Однородная часть системы (1.15) имеет вид

$$
-pX(t) + \int_0^t e^{-ps} \left[ d\Phi(s) \right] X(t - s),
$$

(1.18)

поэтому матрица $K(t, \rho)$

$$
K(t, \rho) = \frac{1}{2\pi} \sum_{n=0}^{\infty} \left[ \left( p + i\tau \right) E - \int_0^t e^{-\left( \rho + i\tau \right) u} d\Phi(u) \right]^{-1} e^{\rho t}.
$$

(1.19)

Делая замену $s - \rho$ на $s$, приходим к системе интегральных уравнений Фредгольма для $X(t)$

$$
X(t) = \mu \int_0^{2\pi} \prod_{0}^{\infty} (t, s, \rho) X(s) \, ds,
$$

(1.20)

где

$$
\prod_{0}^{\infty} (t, s, \rho) = \int_0^t K(t - s - \rho, \rho) e^{-\rho u} d_s \Xi(s + u, u).
$$

(1.21)
2. Рассмотрим уравнение

\[ D(p) \equiv \det \left( pE - \int_{0}^{1} e^{-\mu u} dH(u) \right) = 0. \]  
(2.1)

Его корни обозначим через \( \rho_1, \rho_2, \rho_3 \ldots \). Очевидно, что их можно пере-
нумеровать так, что

\[ \text{Re} \rho_1 \geq \text{Re} \rho_2 \geq \text{Re} \rho_3 \geq \ldots \]  
(2.2)

При этом имеем

\[ \text{Re} \rho_j \to -\infty (j \to \infty). \]  
(2.3)

Условие (1.7) обозначает, что корни \( \rho_1, \rho_2, \ldots \) не совпадают с точками

\[ p = ir (r = 0, \pm 1, \pm 2, \ldots). \]  
(2.4)

Пусть

\[ p \neq p_j, \quad p_j = \rho_j - ir (j = 1, 2, \ldots, r = 0, \pm 1, \pm 2, \ldots). \]  
(2.4)

В этом случае все члены ряда (1.19) ограничены. Исследуем сходимость

\[ |e^{-\mu u}| \leq \max \{ e^{-\text{Re} \mu u}, 1 \} 0 < u \leq \tau. \]  
(2.5)

Поэтому всегда можно выбрать число \( R \) так, чтобы при \( |r| > R \) выполнялось условие

\[ |p + ir| > 2|A(p + ir)|, \quad A(p) \equiv \int_{0}^{1} e^{-\mu u} dH(u). \]  
(2.6)

Разлагая в ряд обратную матрицу, получим

\[ (p + ir)E - A(p + ir))^{-1} = (p + ir)^{-1}E + \]  
\[ + (p + ir)^{-2}A(p + ir) + (p + ir)^{-3}A^2(p + ir) + \cdots \]  
(2.7)

Из неравенства (2.6) следует, что

\[ \left| \sum_{2} \right. (p + ir)^{-1} A^{-1} (p + ir) \left| \leq \right. 2|A(p + ir)||p + ir|^{-2}. \]  
(2.8)

Отсюда получаем, что двойной ряд

\[ \sum_{r = -\infty, r \neq 0, \pm 1, \pm 2, \ldots, \pm R} (p + ir)^{-1} A^{-1} (p + ir) e^{irt} \]  
(2.9)

сходимся равномерно при всех вещественных \( t \).

Сходимость ряда (1.19) определяется сходимостью ряда

\[ \sum_{r = -\infty, r \neq 0, \pm 1, \pm 2, \ldots, \pm R} E(p + ir)^{-1} e^{irt}, \]  
(2.10)

который сходимся по признаку Дирихле. Разрывы матрицы \( K(t, p) \) сов-
падают с разрывами суммы ряда

\[ \frac{1}{2\pi} \sum_{r = -\infty, r \neq 0} -ir^2 E e^{irt} = \frac{1}{2\pi} \sum_{r = 1} E \frac{\sin rt}{r} = \frac{\pi - t}{2\pi} E; \quad t \in (0, 2\pi). \]  
(2.11)
Отсюда следует, что матрица $K(t, p)$ имеет разрыв только при $t = 0$ и

$$K(+0, p) - K(-0, p) = E. \quad (2.12)$$

При выполнении условий (2.4) норма матрицы $K(t, p)$ ограничена при всех $t$.

$$\max_i |K(t, p)| |< \chi(p) < \infty, \quad t \in [0, 2\pi]. \quad (2.13)$$

$K(t)$ в (1.10) обладает аналогичными свойствами, так как совпадает с $K(t, 0)$.

Из условия (1.3) и неравенства (2.5) следует, что интеграл (1.21), определяющий интегральное ядро $\Pi(t, s, p)$, сходится равномерно при $s \in [0, 2\pi]$. Это оправдывает возможность перестановки порядка интегрирования в (1.17) и позволяет перейти от (1.17) к (1.20). Если $p \neq p_j, j = 1, 2, \ldots, r = 0, \pm 1, \ldots$, то ядро ограничено при $t, s \in [0, 2\pi]$. Оно может иметь разрывы I рода.

3. Систему интегральных уравнений (1.20) примем к исследованию устойчивости решений однородной системы (1.12). Закрепим параметр $p \neq p_j (2.4)$. Имеется не более чем счетное число собственных значений $p_1(p), p_2(p), \ldots$ таких, что существует нетривиальное решение системы (1.20). При этом $p_k(p) \to \infty$ при $k \to \infty$. При закрепленном $\mu$ в (1.12) характеристические показатели в (1.14) можно находить из уравнений

$$\mu = \mu_k(p) \quad (k = 1, 2, \ldots). \quad (3.1)$$

Проще составить знаменатель Фредгольма \[ D(\mu, p) \] системы интегральных уравнений (1.20). Трансцендентное уравнение

$$D(\mu, p) = 0, \quad (3.2)$$

разрешенное относительно $p$, имеет корнями характеристические показатели $\mu_1 + ir (r = 0, \pm 1, \pm 2, \ldots)$. Это следует из следующих свойств:

$$K(t, p + i) = e^{-\mu} K(t, p), \quad (3.3)$$

$$\Pi(t, s, p + i) = e^{i(\mu - \mu)} \Pi(t, s, p),$$

которые получаются при непосредственном рассмотрении (1.19) и (1.21).

Пусть $\Delta$ — область комплексной плоскости. Если при всех $p \in \Delta$ собственные числа $\mu_k(p)$ не принадлежат некоторому множеству $M$, то очевидно, что при $\mu \in M$ соответствующие характеристические показатели $\mu_k(\mu) \in \Delta$.

Возьмем в качестве области $\Delta$ правую полуплоскость $\text{Re} \ p > 0$. Если выполнено неравенство

$$2\pi |\mu| \sup \left| \Pi(t, s, p) \right| < 1, \quad t, s \in [0, 2\pi], \quad \text{Re} p > 0, \quad (3.4)$$

то из простого обобщения теоремы 1 [8, стр. 21] следует, что система (1.20) имеет только тривиальное решение $X(t) \equiv 0$. Из работ [1—3] следует, что при

$$|\mu| < \frac{1}{2\pi} \left( \sup \left| \Pi(t, s, p) \right| \right)^{-1}, \quad t, s \in [0, 2\pi], \quad \text{Re} p > 0 \quad (3.5)$$

решения однородной системы (1.12) будут асимптотически устойчивы.
Пример. Рассматривается уравнение
\[
\frac{dy(t)}{dt} = -ay(t) + \mu \cos ty(t - \tau) + \mu \sin ty(t - \tau - \pi),
\]
где \( a > 0, \tau > 0, \ \text{Im} \mu = 0. \)
Для этого уравнения имеем при \( t \in (0, 2\pi) \) из (1.19)
\[
K(t, \rho) = \frac{1}{2\pi} \sum_{r=-\infty}^{\infty} \frac{e^{i\tau r}}{ir + a + \rho} = \frac{e^{-(a+\rho)t}}{1 + e^{-2\pi(a+\rho)}}. \quad (3.7)
\]
Оценивая \( \Pi(t, s, \rho) \), находим при \( \text{Re} \rho \geq 0 \)
\[
|\Pi(t, s, \rho)| = |K(t - s - \tau, \rho) e^{-\rho(t - s - \tau)} + K(t - s - \tau - \pi, \rho) e^{-\rho(t - s - \tau - \pi)}| \leq
\leq |K(t - s - \tau, \rho)|^\frac{1}{2} + |K(t - s - \tau - \pi, \rho)|^\frac{1}{2} \leq
\leq (1 - e^{-2\pi \rho})^{-\frac{1}{2}} (1 + e^{-2\pi \rho})^{-\frac{1}{2}}. \quad (3.8)
\]
Условие устойчивости (3.5) принимает вид
\[
|\mu| < \frac{1}{2\pi} (1 - e^{-2\pi \rho}) (1 + e^{-2\pi \rho})^{-\frac{1}{2}}. \quad (3.9)
\]
Аналогично можно показать, что условие
\[
|y(t)| < Ce^{bt} (C = \text{const, } b > 0) \quad (3.10)
\]
выполнено при
\[
|\mu| < \frac{1}{2\pi} (1 - e^{-2(a+b)\pi}) (1 + e^{-2(a+b)\pi})^{-\frac{1}{2}} e^{-bt}. \quad (3.11)
\]
4. Рассмотрим теперь неоднородную систему (1.1) с правой частью вида (1.4). Частное решение системы (1.1) ищем в форме
\[
Y(t) = e^{it} Z(t), \quad Z(t + 2\pi) \equiv Z(t). \quad (4.1)
\]
Для отыскания \( Z(t) \) получаем систему интегральных уравнений
\[
Z(t) = \mu \int_{0}^{2\pi} \prod (t, s, \alpha) Z(s) ds + \Phi(t), \quad (4.2)
\]
где
\[
\Phi(t) = \int_{0}^{2\pi} K(t - s, \alpha) C(s) ds. \quad (4.3)
\]
Здесь используются обозначения пункта 1 с заменой \( \rho \) на \( \alpha \). Если \( C(t) \) разлагается в равномерно сходящийся ряд Фурье вида (1.6), то \( \Phi(t) \) представим в виде
\[
\Phi(t) = \sum_{r=-\infty}^{\infty} [(a + tr) E - \int_{0}^{2\pi} e^{-(a+tr)u} d\vartheta(u)]^{-1} C_r e^{br}, \quad (4.4)
\]
Если \( a \neq p \), (2.4), то предполагая, что \( \Phi(t) \) имеет непрерывную производную, можно найти соответствующую вектор-функцию \( C(t) \).

Применение альтернативы Фредгольма [9, стр. 87] позволяет получить ряд результатов для системы (1.1). Например, справедлива теорема.

**Теорема 1.** Если однородная система линейных дифференциальных уравнений (1.12) с периодической правой частью и распределенными запаздываниями аргумента не имеет периодического решения, то соответствующая неоднородная система (1.1) дифференциальных уравнений с периодической вектор-функцией \( F(t)(F(t + 2\pi) \equiv F(t) \) имеет единственное периодическое решение.

**Доказательство.** По условию теоремы системы интегральных уравнений (1.17) при \( p = 0 \) не имеет нетривиального решения, т. е. \( \rho \) не является собственным значением, поэтому уравнение (4.2) при \( \alpha = 0 \) имеет единственное периодическое решение \( Z(t) \) при любой непрерывной \( \Phi(t) \). Теорема доказана. Очевидна справедливость и обратной теоремы.

Введем резольвенту \( R(t, s, \mu, p) \) для системы уравнений (1.20). Очевидно, что

\[
R(t + 2\pi, s, \mu, p) = R(t, s + 2\pi, \mu, p) = R(t, s, \mu, p),
\]

(4.5)

\[
R(t, s, \mu, p + t) = e^{(s-t)R}(t, s, \mu, p).
\]

(4.6)

Если \( \mu \) не является собственным значением системы (1.20) при \( p = \alpha \), то решение неоднородной системы интегральных уравнений (4.2) имеет вид

\[
Z(t) = \Phi(t) + \mu \int_0^{2\pi} R(t, s, \mu, \alpha) \Phi(s) ds.
\]

(4.7)

Отсюда следует, что при ограничённости \( \Phi(t) \) решение \( Z(t) \) ограничено, точнее

\[
\max \frac{|Z(t)|}{L} = \max \frac{\Phi(t)}{| | \Phi(t)|, t \in [0, 2\pi]},
\]

(4.8)

где

\[
L = 1 + | \mu | \max \int_0^{2\pi} | R(t, s, \mu, \alpha)| ds.
\]

(4.9)

Теорема 1 и неравенство (4.8) дают доказательство теоремы 4 Халаная [6, стр. 398].

Аналогично теореме 1 можно доказать следующую теорему.

**Теорема 2.** Пусть однородная система (1.12) линейных дифференциальных уравнений с периодической правой частью и распределенными запаздываниями не имеет решений вида

\[
Y(t) = e^{at} X(t), \quad X(t + 2\pi) \equiv X(t) \neq 0.
\]

(4.10)

Это условие необходимо и достаточно для того, чтобы неоднородная система (1.1) при \( F(t) \), имеющем вид (1.4), имела единственное решение вида (4.1).

Если параметр \( \mu \) не является собственным значением системы интегральных уравнений (1.20) при \( p = \alpha \), то очевидно, что при \( \mu = \mu_0 \) число \( \alpha \) не является характеристическим показателем однородной системы (1.12).

Отсюда, в частности, следует теорема 11 [6, стр. 404]. Действительно, система (1.1) при \( F(t) \) вида (1.4), где \( C(t) \neq 0 \), имеет решение вида (4.1) при любом \( \alpha (\Re \alpha \gg 0) \), это означает, что все характеристические пока-
затели $p_j$ (1.12) лежат в левой полуплоскости $\Re p < 0$. В этом случае собственные числа оператора сдвига решения на период $2\pi$ удовлетворяют условию $|\lambda_j| < 1$. Отсюда следует равномерная асимптотическая устойчивость тривиального решения однородной системы (1.12).

5. Введем в рассмотрение сопряженную к (4.2) систему интегральных уравнений

$$U(t) = \mu \int_0^{2\pi} U(s) \prod(s, t, a) \, ds.$$ (5.1)

Из работы [8, стр. 66] имеем следующий результат. Пусть при $p = \alpha$ система интегральных уравнений (1.20) имеет собственное значение $\nu_0$; т. е.; при $\mu = \nu_0$ имеются ненулевые $X_j(t) \neq 0$ решения ($j = 1, \ldots, \gamma$). При $\mu = \nu_0$ сопряженная система интегральных уравнений (5.1) также имеет ненулевые решения $U_j(t) \neq 0$ ($j = 1, \ldots, \gamma$). Для того, чтобы неоднородная система (4.2) интегральных уравнений имела решение, необходимо и достаточно выполнение условий

$$\int_0^{2\pi} U_j(t) \Phi(t) \, dt = 0 \quad (j = 1, \ldots, \gamma).$$ (5.2)

Отсюда следует

Теорема 3. Пусть однородная система линейных дифференциальных уравнений (1.12) с периодической правой частью и распределенными запаздываниями имеет при $\mu = \nu_0$ решения вида (4.10). Для того чтобы неоднородная система (1.1) с $F(t)$ вида (1.4) имела решение вида (4.10), необходимо и достаточно выполнение условий

$$\int_0^{2\pi} \int_0^{2\pi} U_j(t) K(t - s, \alpha) C(s) \, ds \, dt = 0 \quad (j = 1, \ldots, \gamma).$$ (5.3)

Здесь $U_j(t)$ ($j = 1, \ldots, \gamma$) — полный набор линейно-независимых вектор-функций, соответствующих собственному значению $\nu_0$ системы интегральных уравнений (5.1), сопряженной к системе (1.20) (при $p = \alpha$). Матрица $K(t, p)$ определена в (1.19).

Халанай [7] доказал следующее утверждение. Для того чтобы система

$$\dot{x}(t) = \int_t^0 x(t + s) \, d\eta(t, s) + f(t),$$ (5.4)

где $\eta(t, s)$ — периодическая с периодом $2\pi$ по $t$ матрица, а $f(t)$ — периодический вектор периода $2\pi$, имела решение периода $2\pi$, необходимо и достаточно выполнение равенств

$$\int_0^{2\pi} f(\alpha) y_\alpha(\alpha) \, d\alpha = 0$$ (5.5)

для всех периодических решений периода $2\pi$ системы

$$y(\alpha) + \int_0^{2\pi} \eta(\alpha - \gamma, \gamma) y(\alpha - \gamma) \, d\gamma = \text{const.}$$ (5.6)
Теорема 3 и приведенная теорема Халаная тесно связаны. Именно, при $a = 0$
\[ \int_0^{2\pi} U_j(t)K(t-s)\,dt \]  
(5.7)

должен удовлетворять сопряженному уравнению, построенному Халанаем. Рассмотрим систему уравнений
\[ \dot{X}(t) = AX(t) + B(t)X(t-\tau) + F(t), \]  
(5.8)
где
\[ B(t+2\pi) \equiv B(t), \quad F(t+2\pi) \equiv F(t). \]  
(5.9)

Согласно теореме Халаная, для того, чтобы эта система имела периодическое решение периода $2\pi$, необходимо и достаточно, чтобы
\[ \int_0^{2\pi} Y(t)F(t)\,dt = 0 \]  
(5.10)

для всех линейно-независимых периодических решений системы
\[ \dot{Y}(t) = -Y(t)A - Y(t+\tau)B(t+\tau). \]  
(5.11)

Покажем, что для системы (5.8) с условиями (5.9) условия (5.3) и (5.10) эквивалентны. Для этого запишем систему интегральных уравнений, которой удовлетворяют периодические $X(t+2\pi) \equiv X(t)$ решения системы (5.8).

\[ X(t) = \int_0^{2\pi} \frac{1}{2\pi} \sum_{k=-\infty}^{\infty} (ikE - A)^{-1} B(s+\tau)X(s)e^{ik(t-s-\tau)}\,ds + \]
\[ + \int_0^{2\pi} \frac{1}{2\pi} \sum_{k=-\infty}^{\infty} (ikE - A)^{-1} F(s)e^{ik(t-s)}\,ds. \]  
(5.12)

Сопряженная система по Фредгольму имеет вид
\[ U(t) = \int_0^{2\pi} U(s)\frac{1}{2\pi} \sum_{k=-\infty}^{\infty} (ikE - A)^{-1} e^{ik(t-s-\tau)}\,ds \cdot B(t+\tau). \]  
(5.13)

Для того, чтобы система (5.12) имела решение, необходимо и достаточно, чтобы
\[ \int_0^{2\pi} \int_0^{2\pi} \frac{1}{2\pi} \sum_{k=-\infty}^{\infty} (ikE - A)^{-1} F(s)e^{ik(t-\tau)}\,ds\,dt = 0 \]  
(5.14)
Рассмотрим

\[ N(s) = \int_0^{2\pi} U(t) \int_0^{2\pi} \sum_{k=1}^{\infty} (ikE - A)^{-1} e^{ik(t-s)} dt = \]

\[ = \int_0^{2\pi} U(t) \int_0^{2\pi} \sum_{k=1}^{\infty} (ikE - A)^{-1} e^{ik(t-s)} dt + \]

\[ + \int_0^{2\pi} U(t) \int_0^{2\pi} \sum_{k=1}^{\infty} (ikE - A)^{-1} e^{ik(t-s)} dt = \]

\[ = \int_0^{2\pi} U(t) (E - e^{2\pi A})^{-1} e^{At} e^{-As} \cdot e^{2\pi A} dt + \]

\[ + \int_0^{2\pi} U(t) (E - e^{2\pi A})^{-1} e^{At} e^{-As} dt = \int_0^{2\pi} U(t) (E - e^{2\pi A})^{-1} e^{At} dt \cdot e^{-As} - \]

\[ - \int_0^{2\pi} U(t) (E - e^{2\pi A})^{-1} e^{At} (E - e^{2\pi A}) dt \cdot e^{-As} = \]

\[ = \int_0^{2\pi} U(t) (E - e^{2\pi A})^{-1} e^{At} dt \cdot e^{-As} - \int_0^{2\pi} U(t) e^{At} dt \cdot e^{-As} = \]

\[ = \int_0^{2\pi} U(t) (E - e^{2\pi A})^{-1} e^{At} dt \cdot e^{-As} - \int_0^{2\pi} U(t) e^{At} dt \cdot e^{-As} \cdot A + \]

\[ + \int_0^{2\pi} U(t) e^{At} dt \cdot e^{-As} \cdot A - U(s) = -N(s) A - \]

\[ = -N(s) \cdot A - N(s + \tau) \cdot B(s + \tau). \]  \hspace{1cm} (5.16)

Следовательно, условия (5.3) и (5.10) эквивалентны, и теорема 3 — новое доказательство приведенной теоремы Халана.

6. Следует отметить, что изложенный выше способ не позволяет непосредственно найти всю совокупность частных решений типа Флоке системы (1.12), так как частные решения находим в виде (1.13). В действительности же, как показано в [10, стр. 108], частное решение имеет вид

\[ Y(t) = e^{\alpha t} [X_0(t) + tX_1(t) + \cdots + t^nX_n(t)], \]  \hspace{1cm} (6.1)

где \(X_n(t)\) являются периодическими вектор-функциями с периодом \(2\pi\), \(n\) — конечные числа. Подставляя выражение вида

\[ Y(t) = e^{\alpha t} [X_0(t) + tX_1(t) + \cdots + t^nX_n(t)] \]

\[ X_k(t + 2\pi) = X_k(t), \quad (k = 0, 1, \ldots, n) \]  \hspace{1cm} (6.2)
в систему (1.12), находим системы линейных дифференциальных уравнений для отыскания периодических вектор-функций

$$\frac{dX_s}{dt} = -pX_s(t) + \int_0^t e^{-pu} [dH(u)] X_s(t-u) + \mu \int_0^t e^{-pu} [d\Sigma(t, u)] X_s(t-u),$$

$$\frac{dX_q}{dt} = -pX_q(t) + \int_0^t e^{-pu} [dH(u)] X_q(t-u) +$$

$$+ \mu \int_0^t e^{-pu} [d\Sigma(t, u)] X_q(t-u) - (q + 1) X_{q+1}(t) +$$

$$+ \int_0^t e^{-pu} [dH(u) + \mu d\Sigma(t, u)] \sum_{i=1}^{2s} C_i^{-q} (-u)^{-q} X_i(t-u).$$

(6.4)

Для определения $X_s(t)$ получим систему интегральных уравнений

$$X_s(t) = \mu \int_0^{2s} \prod_{i=0}^{2s} (t, s, p) X_s(s) ds,$$

(6.5)

где $\Pi(t, s, p)$ определено в (1.21). Если для некоторых $p, \mu$ эта система имеет нетривиальное решение $X_1(t) \neq 0$, то $\mu$ является собственным значением. Рассматривая систему интегральных уравнений для $X_{-1}(t)$, устанавливаем следующее: для того чтобы она имела решение, необходимо и достаточно выполнение следующих условий:

$$\int_0^{2s} \int_0^{2s} U_j(t) K(t - s, p) \left( \int_0^t e^{-pu} [dH(u)] + \right.$$

$$+ \mu d\Sigma(s, u) u X_i(s-u) \right) ds dt = 0,$$

(6.6)

где $U_j(t)$ — нетривиальные решения системы (5.1).

Пусть выполнены условия существования $X_s(t), X_{s-1}(t), \ldots, X_{s+1}(t)$. Тогда для существования $X_s(t)$ необходимо и достаточно выполнение условий:

$$\int_0^{2s} \int_0^{2s} U_j(t) K(t - s, p) \left[ (q + 1) X_{q+1}(s) - \int_0^t e^{-pu} (-u)^{-q} [dH(u)] + \right.$$}

$$+ \mu d\Sigma(s, u) \sum_{i=q+1}^{2s} C_i^{-q} X_i(s-u) \right] ds dt = 0.$$

(6.7)

7. Все выводы данной статьи (кроме устойчивости) остаются тем же, если рассматривать систему дифференциальных уравнений одновременно с распределенными опережениями и запаздываниями вида

$$\frac{dY(t)}{dt} = \int_0^t [dH(s)] Y(t-s) + \mu \int_0^t [d\Sigma(t, s)] Y(t-s) + F(t).$$

(7.1)
Сопряженная система в этом случае содержит также одновременно опе-
режения и запаздывания. Ядро $II(t, s, p)$ (1.21) обладает теми же
свойствами, что и ранее, хотя корни уравнения (2.1) в этом случае уже
не лежат в одной полуплоскости.

В заключение приношу благодарность Анатолию Дмитриевичу Мыш-
кису за ценные советы и замечания.

ЛИТЕРАТУРА

the Nat. Ac. of Sc., № 8, vol. 48 (1962).

2. С. Н. Шиманов. К теории линейных дифференциальных уравнений с периоди-
ческими коэффициентами и запаздываниями времени. «Прикл. матем. и мех.» т. 27,
вып. 3 (1963).

3. К. Г. Валеев. Исследование устойчивости решений линейного дифференциаль-
ного уравнения с периодическими коэффициентами и стационарными запаздываниями
аргумента методом Хилла. «Прикл. матем. и мех.», т. 26, вып. 4 (1962).

4. Е. Н. Розенваэсер. О вынужденных колебаниях и устойчивости квазигармо-
нических систем. «Прикл. матем. и мех.», т. 25, вып. 2 (1961).

5. Е. Н. Розенваэсер. Теория линейной системы со стационарным запаздыва-

6. А. Халаял и. Некоторые вопросы качественной теории систем с запаздыва-
нием. «Тр. междунар. симпозиум по линейным колебаниям», т. 2. Качественные методы.

7. А. Халаял и. Периодические решения линейных систем с запаздыванием.


10. К. Г. Валеев. Линейные дифференциальные уравнения с синусоидальными
коэффициентами и стационарными запаздываниями аргумента. «Тр. междунар. симпози-

Поступила 9 февраля 1966 г.