частную сумму в столбце $n_{k_p}$, не принадлежащую кругу $K_\varepsilon$. Как и выше, можно показать, что $S_{m_{k_p}} \in K_\varepsilon$ для $m_{k_p} \leq i \leq m_{k_p} - 1 \ (p = 1, 2...)$, причем $\lim_{p \to \infty} (m_{k_p} - 1)/m_{k_p} = \infty$ (14). Учи-
ивая (13), (14) и рассматривая два случая, как и при доказа-
тельстве леммы 1, можно показать, что круг $K_\varepsilon$ является $(l)$-
множеством последовательности $\{S_{m_n}\}$. Тогда по теореме 1 он дол-
жен иметь с множеством $E_2$, по крайней мере, одну общую точку,
что невозможно в силу построения круга $K_\varepsilon$. Таким образом,
множество $E_1(m_k, n_k)$ не имеет точек, не принадлежащих мно-
жеству $E_2$.

Аналогично теореме 4 доказывается следующая теорема.

**Теорема 5.** Пусть $A = \|a_{m_{n_k}}\|$ — нижняя треугольная регу-
лярная положительная матрица, удовлетворяющая условию (3); $S_{m_{n_k}}$ — действительные числа; $\{m_k\}$ и $\{n_k\}$ — заданные возрастаю-
щие последовательности натуральных чисел. Пусть: 1) $|S_{m_{n_k}}| \leq C, \ C > 0 \ (m, n = 0, 1, 2, ...)$; 2) $\lim_{k \to \infty} (S_{m_{n_k}} - S_{m_{n_k}})^0, \ \lim_{k \to \infty} (S_{m_{n_k}} - S_{m_{n_k}})^0, \ \lim_{k \to \infty} (S_{m_{n_k}} - S_{m_{n_k}}) < 0$, когда $m > m_k, n > n_k, \ \lim_{k \to \infty} m_k < \infty, \ \lim_{k \to \infty} n_k < \infty$;
3) $\lim_{k \to \infty} (S_{m_{n_k}} - S_{m_{n_k}}) < 0$, когда $m_k > m, n_k > n, \ \lim_{k \to \infty} m_k < \infty, \ \lim_{k \to \infty} n_k < \infty$. Тогда из условий 1), 2) следует
$\lim_{m, n \to \infty} t_{m_{n_k}} = \lim_{k \to \infty} S_{m_{n_k}}, \ a \ iz \ u s l o j \ 1), \ 3) \ i\ es \ y o n \ p r e d e l \ \lim_{m, n \to \infty} t_{m_{n_k}} = \lim_{k \to \infty} S_{m_{n_k}}$.

Если выполняются условия 1), 2), 3) и, кроме того, сущест-
вует предел $\lim_{m, n \to \infty} t_{m_{n}} = S$, то $\lim_{k \to \infty} S_{m_{n_{k}}} = S$.

Список литературы: 1. Давыдов Н. А. О границах неопределенности при сум-
mировании методами Чезаро и Пуссона-Абеля.— Усп. мат. наук, 1957, т. 12, вып. 4 (76), с. 167—174. 2. Ибрагимов И. И. Методы интерполяции функций и некоторые их применения.— М.: Наука, 1971.— 518 с.

Поступила в редакцию 27.12.76

УДК 517.5

**Н. А. ДАВЫДОВ, В. А. ЛОТОЦКИЙ, Г. А. МИХАЛИН**

**РЕГУЛЯРНЫЕ ПОЛОЖИТЕЛЬНЫЕ ОГРАНИЧЕННО
НЕЭФФЕКТИВНЫЕ МАТРИЧНЫЕ МЕТОДЫ
СУММИРОВАНИЯ**

Хорошо известны теоремы Атню (1, с. 379), Мерсера (2, с.
135) и др., дающие достаточные условия для того, чтобы метод
суммирования, задаваемый регулярной матрицей, был ограничен-
но неэффективен, т. е. не суммировал ни одной расходящейся
ограниченной последовательности. В настоящей статье мы ука-

8
жем целый класс ограниченно неэффективных регулярных поло-
жительных матричных методов суммирования. Нами приняты те-
жо обозначения и определения, что и в работе [1].
Комплексная последовательность \( \{S_n\} \) суммируется к числу \( S \) матрицей \( A = \|a_{nk}\| \) \((n \text{ и } k = 0, 1, 2, \ldots)\), если ряды
\[
t_n = \sum_{k=0}^{\infty} a_{nk}S_k \text{сходятся для каждого } n = 0, 1, 2, \ldots \text{ и } \lim_{n \to \infty} t_n = S \text{[2, с. 61]}
\]
Справедлива следующая

**Теорема.** Регулярная нижняя треугольная положительная матрица \( A = \|a_{nk}\| \) не суммирует ни одной расходящейся огра-
ниченной последовательности, если она удовлетворяет одновре-
менно следующим двум условиям:

1) для каждого фиксированного \( k > 1 \) справедливы неравен-
ства \( a_{nk} \geq a_{n+1,k} \) для \( n = 0, 1, 2, \ldots, k - 2, a_{kk} - a_{k+1,k} \geq \alpha > 0 \),
(1) где число \( \alpha \) не зависит от \( k \),
2) для любого числа \( \varepsilon > 0 \), существует натуральное
число \( p(\varepsilon) \) такое, что для всех \( n \geq n_0 \geq p \) справедливо неравен-
ство \( a_{nn-p} + a_{n-p+1} + \ldots + a_{nn} \geq 1 - \varepsilon \).

**Доказательство.** Без ограничения общности последователь-
ность \( \{S_n\} \) можем считать действительной и 0 = \( S \leq S_k \leq \bar{S} \), где \( \bar{S} = \lim_{n \to \infty} S_n < \lim_{n \to \infty} S_n = \bar{S} \). Заметим, что регулярная положительная матрица \( A = \|a_{nk}\| \), удовлетворяющая неравенствам (1):

а) не может суммировать ограниченную расходящуюся после-
довательность \( \{S_k\} \) к ее нижнему пределу \( S = 0 \),

б) не может суммировать ограниченную расходящуюся последовательность \( \{S_k\} \), для которой существует подпоследовательность \( \{S_{n_i}\} \) такая, что \( S_{n_i} \to S = 0 \) \((i \to \infty)\). \( S_{n_i+1} \to \beta > 0 \) \((i \to \infty)\) (3)

**Действительно, если \( \bar{S} = \lim_{n \to \infty} S_{n_i} \), то \( t_{n_i} = \sum_{v=0}^{n_i} a_{n_i,v}S_v \geq a_{n_i,n_i}S_{n_i} \geq \alpha S_{n_i} \to \alpha \bar{S} > 0 \) \((i \to \infty)\), и утверждение а) дока-
зано.**

Если для ограниченной расходящейся последовательности
\( \{S_k\} \) справедливо (3), то
\[
t_{q_i-1} - t_{q_i} = \sum_{v=0}^{q_i-2} (a_{q_i-1,v} - a_{q_i,v})S_v + (a_{q_i-1,q_i-1}a_{q_iq_i-1})S_{q_i-1} + \]
\[
+ (a_{q_i-1,q_i} - a_{q_iq_i})S_{q_i} \geq \alpha S_{q_i-1} + (a_{q_i-1,q_i} - \]
\[
- a_{q_iq_i})S_{q_i} \geq \alpha S_{q_i-1} + 0(1) \geq \alpha \beta + 0(1).

---

* Условию (3) удовлетворяет, например, всякая ограниченная последова-
тельность \( \{S_k\} \), для которой нижний предел \( S \) является изолированным час-
тичным пределом множества всех частичных пределов последовательности
\( \{S_k\} \).
Следовательно, \( \{t_n\} \) — расходящаяся последовательность, и утверждение б) доказано.

Ведя доказательство теоремы методом рассуждения от противного, предположим, что регулярная положительная матрица \( A = ||a_{nk}|| \), удовлетворяющая одновременно двум условиям (1), (2), суммирует некоторую расходящуюся ограниченную последовательность \( \{S_k\} \) к \( S \). Тогда, в силу сделанного выше замечания a), имеем

\[
\lim_{n \to \infty} \sum_{k=0}^{n} a_{nk} S_k = S > 0.
\]

Число \( \epsilon > 0 \) в неравенстве (2) возьмем столь малым, чтобы \( \epsilon \times \tilde{S} < S/3 \) (4). Для \( \gamma, 0 < \gamma < S/3 \) (5) можно построить последовательности \( \{m_\gamma\}, \{k_\gamma\} \) такие, что \( S_{m_\gamma} \to 0 (\gamma \to \infty), \ m_\gamma < k_\gamma \leq \leq m_\gamma, \) \( S_k < \gamma \) для \( k \in [k_\gamma; m_\gamma], \ S_{k_{\gamma-1}} \geq \gamma (\gamma = 1, 2, \ldots). \) Возможны два случая: I) \( \lim_{\gamma \to \infty} (m_\gamma - k_\gamma) = +\infty, \) II) \( \lim_{\gamma \to \infty} (m_\gamma - k_\gamma) < +\infty. \)

В случае I) с учетом (2) — (6) имеем

\[
t_{m_\gamma} = \sum_{j=0}^{m_\gamma} a_{m_\gamma j} S_j = \sum_{j=0}^{k_\gamma-1} a_{m_\gamma j} S_j + \sum_{j=k_\gamma}^{m_\gamma} a_{m_\gamma j} S_j \leq \tilde{S} \sum_{j=0}^{k_\gamma-1} a_{m_\gamma j} + \gamma \sum_{j=k_\gamma}^{m_\gamma} a_{m_\gamma j} \leq S (1 - \sum_{j=m_\gamma - \rho}^{m_\gamma} a_{m_\gamma j}) + \gamma + 0 (1) < \epsilon \tilde{S} + \gamma + 0 (1) < \frac{S}{3} + \frac{\epsilon}{3} + 0 (1) = \frac{2}{3} \epsilon + 0 (1).
\]

Полученное неравенство противоречит нашему предположению, что \( t_n \to S (n \to \infty). \)

В случае II) существует подпоследовательность \( \{S_{q_i}\} \) такая, что будет верно условие (3). В этом случае регулярная положительная матрица \( A = ||a_{nk}|| \), удовлетворяющая условию (1), в силу замечания б), сделанного выше, не может суммировать расходящуюся ограниченную последовательность \( \{S_k\}. \) Опять получили противоречие. Теорема доказана.

Замечания: 1. Регулярная положительная матрица \( A = ||a_{nk}|| \), удовлетворяющая условию (1), не может суммировать неограниченную последовательность \( \{S_k\}, \) все члены которой содержатся в угле раствора меньше \( \pi \) [3, теорема 7].

2. Регулярная положительная матрица \( A = ||a_{nk}|| \), удовлетворяющая условию (2), сохраняет ядро всякой ограниченной последовательности \( \{S_k\}, \) для которой \( S_k - S_{k-1} = 0 (1) \) [4, теорема 4].

3. Нижняя треугольная регулярная положительная матрица \( A = ||a_{nk}|| \), удовлетворяющая условию (2), не суммирует всю неограниченную последовательность \( \{S_k\}, \) для которой \( S_k - S_{k-1} = = 0 (1) \) [4, лемма 2].
Пусть $X$ — локально выпуклое пространство (л. в. п.) с определяющей системой предnorm $(|\cdot|_T)_{T \in G}$, $(x_n)$ и $(y_n)$ — две последовательности элементов в $X$. Условимся писать $(x_n) \sim (y_n)$, если последовательности $(x_n)$ и $(y_n)$ слабо эквивалентны в этом смысле, что выполнено условие: $\forall \gamma \in G \exists \gamma_1 \in G \exists C > 0 \forall n \leq C |x_n|_{\gamma_1}, |y_n|_{\gamma_1} \leq C |x_n|_T, (n = 1, 2, \ldots)$

Определение 1. Последовательность $(x_n) \subset X, x_n \neq 0 \ (n = 1, 2, \ldots)$, называют: а) **симметричной** (относительно слабой эквивалентности), если $(x_n) \sim (x_{\sigma(n)})$ для любой перестановки индексов $\sigma(n)$ и **симметризуемой**, если ее можно сделать симметричной умножением элементов на положительные числа (нормировкой); б) **нормированной**, если выполнены условия (ср. [1])

1) $\exists_{\gamma_0} \in G \lim_{|x_n|_{\gamma_0} \rightarrow 0}, 2) V \in G \mid \lim_{|x_n|_{\gamma} \rightarrow \infty}$, и нормируемой,

если выполнение этих условий достигается в результате нормировки; в) **почти симметричной**, если для любой перестановки $\sigma(n)$ найдется последовательность положительных чисел $(\lambda_n)$, такая, что $(x_n) \sim (\lambda_n x_{\sigma(n)}); \gamma)$ **почти нормируемой**, если для любой последовательности неотрицательных чисел $(t_n)$, таких, что $\lim_{n \rightarrow \infty} t_n = 0$, найдется последовательность $(\lambda_n), \lambda_n > 0 (n = 1, 2, \ldots)$, удовлетворяющая условиям

1) $\forall \gamma \in G \mid \lim_{n \rightarrow \infty} \lambda_n |x_n|_{\gamma_0} > 0, 2) V \in G \mid \lim_{n \rightarrow \infty} t_n \lambda_n |x_n|_{\gamma} = 0$.

Далее примем, что последовательность $(x_n)$ вырождена, если ряд вида $t_1x_1 + t_2x_2 + \ldots + t_nx_n + \ldots$ либо сходится в топологии $X$, каковы бы ни были числа $t_n$, либо расходится всякий раз, когда бесконечное число $t_n$ отлично от нуля. В противном случае последовательность $(x_n)$ назовем невырожденной. Мы докажем, в частности, следующее утверждение.

УДК 513.88

М. М. ДРАГИЛЕВ

О СИММЕТРИЧНЫХ И НОРМИРОВАННЫХ ПОСЛЕДОВАТЕЛЬНОСТЯХ В ЛОКАЛЬНО ВЫПУКЛЫХ ПРОСТРАНСТВАХ

Поступила в редколлегию 22. 06. 77.