Е. М. РУССАКОВСКИЙ
О ГАНКЕЛЕВЫХ И ТЕПЛИЦЕВЫХ МАТРИЦАХ
И БЕЗУТИАНТЕ. I

В статье формулируется критерий обратимости ганкелевых и теплицевых матриц, указывается способ построения обратных к ним матриц.

При изучении ганкелевых матриц используется их связь с безутиантами. Результаты, полученные для ганкелевых матриц, переносятся с соответствующими изменениями на теплицевые матрицы.

1. Определения и обозначения. Пусть \((0 \neq h(\lambda)) = \sum_{i=0}^{n} d_i\lambda^i\) — комплексный многочлен формальной степени \(n\), истинную степень
которого обозначим через $\deg h$. Каждый такой многочлен имеет ровно n корней (с учетом кратности), если учитывать корень $\lambda = \infty$ в случае, когда $\deg h < n$.

Пусть $f(\lambda) = \sum_{i=0}^{n} x_i\lambda^i$ и $g(\lambda) = \sum_{i=0}^{n} y_i\lambda^i$ — два комплексных многочлена формальной степени n, хотя бы один из которых не равен нулю тождественно. Обозначим через $m_{i,g}$ количество общих (конечных и бесконечных) корней многочленов $f(\lambda)$ и $g(\lambda)$, подсчитанное с учетом кратности.

Обозначим через $R(\lambda)$ рациональную дробь $f(\lambda)/g(\lambda)$, если $\deg f \leq \deg g$, и $-g(\lambda)/f(\lambda)$, если $\deg f > \deg g$. Пусть $l_{i,g}$ — степень рациональной дроби $R(\lambda)$ в ее несократимом представлении. Очевидно, что $l_{i,g} = n - m_{i,g}$. Представим $R(\lambda)$ в виде ряда

$$R(\lambda) = \sum_{i=0}^{\infty} (s_i/\lambda^i).$$

Ганкелеву матрицу $(s_{i+j-i})_{i,j=1}^{n}$ обозначим через $S_{i,g}$. Результирующим многочленов $f(\lambda)$ и $g(\lambda)$ назовем определитель матрицы $R_{i,g}$ порядка $2n$

$$R_{i,g} = \begin{pmatrix} x_{n} & 0 & \ldots & 0 & y_{n} & 0 & \ldots & 0 \\ x_{n-1} & x_{n} & \ldots & 0 & y_{n-1} & y_{n} & \ldots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\ x_{1} & x_{2} & \ldots & x_{n} & y_{1} & y_{2} & \ldots & y_{n} \\ x_{0} & x_{1} & \ldots & x_{n-1} & y_{0} & y_{1} & \ldots & y_{n-1} \\ 0 & x_{0} & \ldots & x_{n-2} & 0 & y_{0} & \ldots & y_{n-2} \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \ldots & x_{0} & 0 & 0 & \ldots & y_{0} \\ \end{pmatrix}$$

$$= \begin{pmatrix} \tilde{X} & \tilde{Y} \\ \tilde{X} & \tilde{Y} \end{pmatrix}$$

(блоки \tilde{X}, \tilde{X}, \tilde{Y}, \tilde{Y} — матрицы размеров $n \times n$). Как известно, результат обращается в нуль тогда и только тогда, когда многочлены $f(\lambda)$ и $g(\lambda)$ имеют хотя бы один общий (конечный или бесконечный) корень.

Безутиантов многочленов $f(\lambda)$ и $g(\lambda)$ назовем матрицу $B_{i,g}$ порядка n

$$B_{i,g} = \left(\sum_{i=\min (i, j)-1}^{l=\max (0, i+j-n-1)} \begin{vmatrix} x_{n-j}x_{n+l-i-j+1} \\ y_{n-i}y_{n+i-j-i+1} \end{vmatrix} \right)_{i,j=1}^{n}$$

(эта матрица лишь обратным порядком строк и столбцов отличается от безутианты, определенной в работе [1, с. 13]). Очевидно, что $B_{i,g}^t = B_{i,g}$ (знакок t означает транспонирование).

Пусть $x = \{x_n, x_n-1, \ldots, x_0\}$, $y = \{y_n, y_n-1, \ldots, y_0\}$. Обозначим через $T_{x,y}$ матрицу порядка $2n-1$
Пусть Δ_i — алгебраическое дополнение элемента $t_{i,1}$ в матрице $T_{x,y}$. Ганкелеву матрицу \((-1)^{\lfloor n/2 \rfloor + n+1} \cdot \Delta_{i+j-1}^{n}, i, j = 1\) обозначим через $\Delta_{i,g}$.

Известно, что при умножении на матрицу $J = (\delta_{i, n-i-1})^n, i = 1$ (чтобы символ Кронекера) слева или справа ганкелевы матрицы переходят в теплицы, а теплицы — в ганкелевы [2, гл. IV]. Эти соображения в дальнейшем используются для получения двойственных утверждений о теплицевых матрицах из соответствующих утверждений о ганкелевских матрицах (доказательства двойственных утверждений не приводятся).

2. Некоторые предложения о безутианте. В этом пункте приведены краткие доказательства по существу известных предложений о безутианте, которые впоследствии используются при доказательстве теорем обращения.

Предложение 1. Безутианта $B_{i,g}$ допускает следующие представления:

$$B_{i,g} = \tilde{X}J\tilde{Y}^t - \tilde{Y}J\tilde{X}^t,$$
$$B_{i,g} = \tilde{Y}J\tilde{X}^t - \tilde{X}J\tilde{Y}^t$$ (4)

(см. п. 1; ср. с [3, с. 71—72]).

Доказательство. Нетрудно проверить, что матрицы $R_{i,g}$ и $B_{i,g}$ связаны соотношением

$$R_{i,g} \begin{pmatrix} 0 & J \\ -J & 0 \end{pmatrix} R_{i,g}^t = \begin{pmatrix} 0 & B_{i,g} \\ -B_{i,g} & 0 \end{pmatrix}. $$ (5)

Из соотношений (1), (5) и симметричности безутианты следует справедливость предложения 1.

Предложение 2. Ранг и дефект безутианты $B_{i,g}$ равны соответственно $l_{i,g}$ и $m_{i,g}$ (см. п. 1).

Доказательство. Используя работу [1, с. 14], получаем, что у матриц $B_{i,g}$ и $S_{i,g}$ ранги и дефекты совпадают. Остается
заметить, что ранг и дефект матрицы $S_{l, g}$ равны соответственно $l_{i, g}$ и $m_{l, g}$ [4, гл. XVI, § 10].

Пределение 3. Определитель гладкого $B_{l, g}$ равен $(-1)^{[n/2]} \cdot \det R_{l, g}$.

Доказательство. Из соотношения (5) следует, что
$$\det B_{l, g} = c(n) \cdot \det R_{l, g},$$
где $|c(n)| = 1$. Не трудно проверить, что
$$c(n) = (-1)^{[n/2]}$$
[см. также 3, с. 72—73].

Следствием предложений 2 и предложения 3 является

Предложение 4. Если $B_{l, g}$ не выражена тогда и только тогда, когда многочлены $f(\lambda)$ и $g(\lambda)$ не имеют общих (конечных или бесконечных) корней.

Пределение 5. Матрица $\tilde{B}_{l, g}$, присоединённая к гладкому $B_{l, g}$, есть ганцелевая матрица $\Delta_{l, g}$.

Докажем предварительно следующую лемму:

Лемма 1. Пусть задан набор $\{x, y\} = \{x_n, x_{n-1}, \ldots, x_0, y_n, y_{n-1}, \ldots, y_0\}$ и число δ. Обозначим через $v(2n - 1)$ мерную вектор-строку $(\delta, 0, 0, \ldots, 0)$. Если $u = (\tilde{u}_1, \tilde{u}_2, \ldots, \tilde{u}_{2n-1})$ — некоторое решение системы $2n - 1$ линейных уравнений с $2n - 1$ неизвестными

$$u \cdot T_{x, y} = v,$$

(6)

$\tilde{U} — ганцелевая матрица $(\tilde{u}_{i+j-1})_{i=1}^{n}$, $B_{l, g} — гладкий многочлен $f(\lambda) = \sum_{i=0}^{n} x_i \lambda^i$ и $g(\lambda) = \sum_{i=0}^{n} y_i \lambda^i$, $E_n — единичная матрица порядка n, то

$$\tilde{U}B_{l, g} = \delta E_n.$$

(7)

Доказательство леммы 1. Подставим в систему (6) \tilde{u}_i вместо u_i $(i = 1, 2, \ldots, 2n - 1)$. Из полученных соотношений нетрудно вывести следующие:

$$\sum_{i=1}^{n} \tilde{u}_i \cdot \begin{vmatrix} x_n & x_{n-i} \\ y_n & y_{n-i} \end{vmatrix} = \delta,$$

(8)

$$\sum_{i=0}^{n} \tilde{u}_{i+k-1} \cdot \begin{vmatrix} x_{n-i} & x_i \\ y_{n-i} & y_j \end{vmatrix} = 0 \ (j = 0, 1, \ldots, n; k = 2, 3, \ldots, n).$$

Используя соотношения (8), нетрудно проверить, что

$$\sum_{i=1}^{n} \sum_{t=\min(i, s)-1}^{l=\min(i, s)-1} \tilde{u}_{r+i-1} \cdot \begin{vmatrix} x_{n-l}x_{n+l-i-s+1} \\ y_{n-l}y_{n+l-i-s+1} \end{vmatrix} = \delta \delta_{r, s},$$

(9)

$$r = 1, 2, \ldots, n; s = 1, 2, \ldots, n), \text{ т. е. выполняется соотношение (7).}$$

Лемма 1 доказана.
Доказательство предложения 5. Нетрудно проверить, что при $\delta = (-1)^{n+1} \det R_{i,g}$ система уравнений (6) имеет решение $u_i = \Delta_i (i = 1, 2, \ldots, 2n - 1)$. По лемме 1 имеем:

$$(\Delta_{i-1, j-1})^n_{i-1} B_{i, g} = (-1)^{n+1} \det R_{i,g} E_n,$$

откуда

$$\Delta_{i, g} B_{i, g} = (-1)^{n+1/2} \det R_{i,g} E_n = \det B_{i,g} E_n. \quad (9)$$

Из соотношения (9) следует справедливость доказываемого утверждения для случая невырожденной безутиант. Используя соображения непрерывности, распространяем доказанное на вырожденные безутианты. Впрочем, для случая вырожденной безутианты можно привести и чisto алгебраическое доказательство.

Предложение 6. Матрица U, присоединенная к ганкелевой матрице $U = (u_{i,j})^{n}_{i,j=1}$, может быть представлена в виде безутианта $B_{i,g}$ многочленов $f(\lambda)$ и $g(\lambda)$ формальной степени n.

Предварительно сформулируем следующую лемму:

Лемма 2. Пусть заданы $(2n - 1)$ - мерная вектор-строка $u = (u_1, u_2, \ldots, u_{2n-1})$ и число δ. Обозначим через $v (2n - 1)$ - мерную вектор-строку $(\delta, 0, 0, \ldots, 0)$.

Если $\{x, y\} = \{\tilde{x}_n, \tilde{x}_{n-1}, \ldots, \tilde{x}_0, \tilde{y}_n, \tilde{y}_{n-1}, \ldots, \tilde{y}_0\} = \text{-некоторое решение системы $2n - 1$ уравнений с $2n + 2$ неизвестными},$

$$u \cdot T_{x,y} = v,$$

(10)

U — ганкелева матрица $(u_{i,j})^{n}_{i,j=1}$, $B_{i,g}$ — безутианта многочленов $f(\lambda) = \sum_{i=0}^{n} \tilde{x}_i \lambda^i$ и $g(\lambda) = \sum_{i=0}^{n} \tilde{y}_i \lambda^i$, то

$$UB_{i,g} = \delta E_n. \quad (11)$$

Доказательство леммы 2 аналогично доказательству леммы 1.

Доказательство предложения 6. Рассмотрим систему уравнений (10) при $\delta = \det U$. Покажем, что если $\det U \neq 0$, то система (10) разрешима.

Пусть $x_n, x_{n+1}, y_n, y_{n+1}$ — некоторые числа, связанные соотношением $\left[\begin{array}{c} \tilde{x}_n \\ \tilde{y}_n \end{array} \right] = \det U$. Обозначим через z_x n - мерный вектор-столбец $(\tilde{x}_{n+1}, -u_2 \tilde{x}_n, -u_2 \tilde{x}_n, \ldots, -u_{n-1} \tilde{x}_n)^t$, через z_y вектор-столбец $(\tilde{y}_{n+1}, -u_1 \tilde{y}_n, -u_2 \tilde{y}_n, \ldots, -u_{n-1} \tilde{y}_n)^t$. Рассмотрим две системы n линейных уравнений с n неизвестными

$$U \bar{x} = z_x, \quad U \bar{y} = z_y,$$

(12)

где $\bar{x} = (x_{n+1, x_{n-2}, \ldots, x_0)^t}$, $\bar{y} = (y_{n+1, y_{n-2}, \ldots, y_0)^t}$. Так как $\det U \neq 0$, системы (12) имеют решения $\bar{x} = (\tilde{x}_{n+1, \tilde{x}_{n-2}, \ldots, \tilde{x}_0)^t}$,
Пусть $B_{i, g} = \text{безутианта многочленов } f(\lambda) = \sum_{i=0}^{n} \tilde{x}_i \lambda^i$ и $g(\lambda) = \sum_{i=0}^{n} \tilde{y}_i \lambda^i$. По лемме 2 имеем $UB_{i, g} = \det UE_n$. Поскольку $\det U \neq 0$, отсюда следует, что $\hat{U} = B_{i, g}$. Используя соображения непрерывности, распространяем доказанное на вырожденные ганкелевые матрицы. Впрочем, для вырожденных ганкелевых матриц нетрудно дать чисто алгебраическое доказательство предложения 6, если заметить, что любая симметрическая матрица ранга не более 1 может быть представлена в виде безутианты двух многочленов.

Следствием предложений 5 и 6 является

Предложение 7. Безутианты многочленов формальной степени n, не имеющих общих (конечных и бесконечных) корней, и только они, являются матрицами, обратными к невырожденным ганкелевым матрицам порядка n.

Список литературы: 1. Крейн М. Г., Неймарк М. А. Метод симметрических и эрмитовых форм в теории отделения корней алгебраических уравнений. Харьков, ДНТВУ, 1936. 44 с. 2. Иохвидов И. С. Ганкелевы и теплицевые матрицы и формы. М., Наука, 1974. 264 с. 3. Ландер Ф. Н. Безутианта и обращение ганкелевых и теплицевых матриц.—Мат. исследования, 1974, т. IX, вып. 2 (32), с. 69—87. 4. Гантмахер Ф. Р. Теория матриц. М., Наука, 1967. 576 с.

Поступила 25 мая 1976 г.