Pulmonary embolism
- the great masquerader

V.N. Karazin Kharkov National University
Department of Internal Medicine
Associate professor Makharynska O.S., MD, PhD
2016
Pulmonary embolism (PE) is a blockage of the main artery of the lung or one of its branches by a substance that has travelled from elsewhere in the body through the bloodstream (embolism). PE most commonly results from deep vein thrombosis (a blood clot in the deep veins of the legs or pelvis) that breaks off and migrates to the lung, a process termed venous thromboembolism (VTE).

Classification of Pulmonary Embolism

<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Massive PE</td>
<td>Accounts for 5-10% of cases</td>
</tr>
<tr>
<td></td>
<td>- Dyspnea, Syncope, Hypotension, Cyanosis</td>
</tr>
<tr>
<td>Submassive PE</td>
<td>Accounts for 20-25% of patients</td>
</tr>
<tr>
<td></td>
<td>- RV dysfunction (right heart failure) despite normal systemic arterial pressure.</td>
</tr>
<tr>
<td>Low-risk</td>
<td>Constitutes about 70-75% of cases</td>
</tr>
</tbody>
</table>

Acute
- Situated centrally within the vascular lumen or if it occludes a vessel (vessel cut-off sign)
- Main pulmonary artery, the left and right main pulmonary arteries, the anterior trunk, the right and left interlobar arteries, the left upper lobe trunk, the right middle lobe artery, and the right and left lower lobe arteries

Chronic
- It is eccentric and contiguous with the vessel wall, it reduces the arterial diameter by more than 50%, evidence of recanalization within the thrombus is present, and an arterial web is present.
- Segmental and subsegmental arteries of the right upper lobe, the right middle lobe, the right lower lobe, the left upper lobe, the lingula, and the left lower lobe

Central

Peripheral

http://emedicine.medscape.com/article/300901-overview
http://www.escardio.org/Guidelines-Education/Clinical-Practice-Guidelines/Acute-Pulmonary-Embolism-Diagnosis-and-Management-of
Acute Central

- Massive PE
Predisposing factors of PULMONARY EMBOLISM

- Venous stasis
- Hypercoagulable states
- Immobilization
- Surgery and trauma
- Pregnancy
- Oral contraceptives and estrogen replacement
- Malignancy
- Warfarin (first few days of therapy)
- Central venous instrumentation - past 3 months
- Hereditary factors (Protein C deficiency, factor V Leiden, plasminogen activator abnormality etc.)
- Acute medical illness (AIDS (lupus anticoagulant), Behçet disease, myocardial infarction, systemic lupus erythematosus, polycythemia, ulcerative colitis etc.)

Virchow TRIAD

HYPERCOAGULABILITY
- Major surgery / trauma
- Malignancy
- Pregnancy (post-partum)
- Inherited thrombophilia
- Infection and sepsis

BLOOD STASIS
Failure of atrial systole and left atrial dilatation contribute to blood stasis and a prothrombotic state.

VESSEL WALL DAMAGE
Endothelial damage in the atria releases factors that activate both platelets and the coagulation cascade.

CIRCULATORY STASIS
- Immobility
- Venous obstruction (obesity, tumour, pregnancy)
- Varicose veins
- Atrial fibrillation or left ventricular dysfunction
- Congenital abnormalities affecting venous anatomy (e.g., May-Thurner and Paget-Schroetter syndrome)
- Low heart rate (bradycardia) and low blood pressure

VASCULAR DAMAGE
- Thrombophlebitis
- Cellulitis
- Atherosclerosis
- Indwelling catheter / heart valve
- Venepuncture
- Physical trauma, strain or injury
- Microtrauma to vessel wall

CHANGES IN BLOOD CONSTITUENTS
Abnormal changes in both platelets and the coagulation cascade result in a hypercoagulable state.

http://www.escardio.org/Guidelines-&-Education/Clinical-Practice-Guidelines/Acute-Pulmonary-Embolism-Diagnosis-and-Management-of
PULMONARY EMBOLISM: Pathophysiology

Increased RV afterload

RV dilatation
TV insufficiency
RV wall tension
Neurohormonal activation
Myocardial inflammation
RV O₂ demand
RV ischaemia

Cardiogenic shock
Death

RV O₂ delivery
RV coronary perfusion
Systemic BP
Low CO
LV pre-load
RV output
RV contractility

BP = blood pressure; CO = cardiac output; LV = left ventricular; RV = right ventricular; TV = tricuspid valve.

http://www.escardio.org/Guidelines-&-Education/Clinical-Practice-Guidelines/Acute-Pulmonary-Embolism-Diagnosis-and-Management-of

ESC Guidelines 2014
PULMONARY EMBOLISM: clinical picture

- Abrupt onset of pleuritic chest pain
- Shortness of breath
- Hypoxia
- Seizures
- Syncope
- Abdominal pain
- Fever
- Productive cough
- Wheezing
- Decreasing level of consciousness
- New onset of atrial fibrillation
- Hemoptysis
- Flank pain
- Delirium (in elderly patients)

<table>
<thead>
<tr>
<th>Feature</th>
<th>PE confirmed (n = 1880)</th>
<th>PE not confirmed (n = 528)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dyspnoea</td>
<td>50%</td>
<td>51%</td>
</tr>
<tr>
<td>Pleuritic chest pain</td>
<td>39%</td>
<td>28%</td>
</tr>
<tr>
<td>Cough</td>
<td>23%</td>
<td>23%</td>
</tr>
<tr>
<td>Substernal chest pain</td>
<td>15%</td>
<td>17%</td>
</tr>
<tr>
<td>Fever</td>
<td>10%</td>
<td>10%</td>
</tr>
<tr>
<td>Haemoptysis</td>
<td>8%</td>
<td>4%</td>
</tr>
<tr>
<td>Syncope</td>
<td>6%</td>
<td>6%</td>
</tr>
<tr>
<td>Unilateral leg pain</td>
<td>6%</td>
<td>5%</td>
</tr>
<tr>
<td>Signs of DVT (unilateral extremity swelling)</td>
<td>24%</td>
<td>18%</td>
</tr>
</tbody>
</table>

DVT = deep vein thrombosis.

ESC Guidelines 2014

http://www.escardio.org/Guidelines-%E2%80%93-Education/Clinical-Practice-Guidelines/Acute-Pulmonary-Embolism-Diagnosis-and-Management-of
Physical signs:

- Tachypnea (RR>16/min) - 96%
- Rales - 58%
- Accentuated second heart sound - 53%
- Tachycardia (heart rate >100/min) - 44%
- Fever (temperature >37.8°C) - 43%
- Diaphoresis - 36%
- S₃ or S₄ gallop - 34%
- Clinical signs and symptoms of thrombophlebitis - 32%
- Lower extremity edema - 24%
- Cardiac murmur - 23%
- Cyanosis - 19%

http://emedicine.medscape.com/article/300901
PULMONARY EMBOLISM: Physical Examination

may be grouped into 4 categories as follows:

- Massive pulmonary infarction
- Acute pulmonary infarction
- Acute embolism without infarction
- Multiple pulmonary emboli or thrombi
PULMONARY EMBOLISM: massive

thrombus

heart

thrombus

thrombus

thrombus
PULMONARY EMBOLISM: acute embolism without infarction

PULMONARY EMBOLISM: multiple pulmonary emboli or thrombi

These two coronal CT images are of the same patient who presented with dyspnea, chest pain, and mild core pulmonale. The chest CT angiogram reveals multiple PE (arrows) as was suspected by clinical observations. Pulmonary emboli were found in several secondary, tertiary, and distal branches of the pulmonary arteries.

PULMONARY EMBOLISM: Assessment of clinical probability

Wells rule

<table>
<thead>
<tr>
<th>Items</th>
<th>Clinical decision rule points</th>
<th>(Canadian Pulmonary Embolism Score)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Previous PE or DVT</td>
<td>1.5</td>
<td>1.5</td>
</tr>
<tr>
<td>Heart rate ≥100 b.p.m.</td>
<td>1.5</td>
<td>1.5</td>
</tr>
<tr>
<td>Surgery or immobilization within the past four weeks</td>
<td>1.5</td>
<td>1.5</td>
</tr>
<tr>
<td>Haemoptysis</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Active cancer</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Clinical signs of DVT</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Alternative diagnosis less likely than PE</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Revised Geneva score

<table>
<thead>
<tr>
<th>Items</th>
<th>Clinical decision rule points</th>
<th>Simplified version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Previous PE or DVT</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Heart rate 75–94 b.p.m.</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Heart rate ≥95 b.p.m.</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>Surgery or fracture within the past month</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Haemoptysis</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Active cancer</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Unilateral lower limb pain</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Pain on lower limb deep venous pulsation and unilateral oedema</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>Age ≥65 years</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Clinical probability

<table>
<thead>
<tr>
<th>Items</th>
<th>Three-level score</th>
<th>Two-level score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td>0–1</td>
<td>0–4</td>
</tr>
<tr>
<td>Intermediate</td>
<td>2–6</td>
<td>2–6</td>
</tr>
<tr>
<td>High</td>
<td>≥7</td>
<td>≥5</td>
</tr>
</tbody>
</table>

Revised Geneva score

<table>
<thead>
<tr>
<th>Items</th>
<th>Three-level score</th>
<th>Two-level score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td>0–3</td>
<td>0–5</td>
</tr>
<tr>
<td>Intermediate</td>
<td>4–10</td>
<td>4–10</td>
</tr>
<tr>
<td>High</td>
<td>≥11</td>
<td>≥6</td>
</tr>
</tbody>
</table>

PUI etiology score

<table>
<thead>
<tr>
<th>Items</th>
<th>PE unlikely</th>
<th>PE likely</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td>0–4</td>
<td>0–5</td>
</tr>
<tr>
<td>Intermediate</td>
<td>2–6</td>
<td>2–7</td>
</tr>
<tr>
<td>High</td>
<td>≥7</td>
<td>≥8</td>
</tr>
</tbody>
</table>

PULMONARY EMBOLISM: D-dimer testing

- D-dimer testing is most reliable for excluding pulmonary embolism in younger patients who have no associated comorbidity or history of venous thromboembolism and whose symptoms are of short duration.

- It is of questionable value in patients who are older than 80 years, who are hospitalized, who have cancer, or who are pregnant, because nonspecific elevation of D-dimer concentrations is common in such patients.

- D-dimer testing should not be used when the clinical probability of pulmonary embolism is high.

Conditions Associated with D-Dimer Production
- Acute myocardial infarction
- Acute stroke
- Advanced age
- Connective tissue diseases
- Disseminated intravascular coagulation (DIC)
- Heart failure
- Hemorrhaging
- Infection (moderate to severe)
- Malignancy
- Postoperative
- Pregnancy
- Renal failure
- Sickle cell crisis
- Trauma
- Venous thrombosis

Using D-dimer Assay
- In combination with low pretest clinical probability test is highly predictive for withholding anticoagulant therapy.
- D-dimer measurement alone cannot be accurately used to determine the presence of absence of VTE or PE.
- Only ELISA and whole blood assays such as Simpli-RED have accuracy for clinical reliability.
- Specificity is sufficiently diminished in elderly and some types of comorbid states like leukocytosis, anemia, etc.
- Used in parallel with clinical test D-dimer can guide clinical diagnosis, limit invasive and serial testing for VTE/PE.

Potentially useful laboratory tests in patients with suspected pulmonary embolism include:

- D-dimer testing
- Ischemia-modified albumin level
- White blood cell count
- Arterial blood gases
- Markers of myocardial injury - serum troponin and liptin levels
- Markers of right ventricular dysfunction - brain natriuretic peptide

Laboratory tests and biomarkers

Markers of right ventricular dysfunction

In normotensive patients with PE, the positive predictive value of elevated BNP or NT-proBNP concentrations for early mortality is low. Haemodynamically stable patients with low NT-proBNP levels may be candidates for early discharge and outpatient treatment.

Markers of myocardial injury

Elevated plasma troponin concentrations on admission have been reported in connection with PE and were associated with worse prognosis (troponin T concentrations >14 pg/mL).

Elevated serum creatinine levels and a decreased (calculated) glomerular filtration rate are related to 30-day all-cause mortality in acute PE.
Imaging studies that aid in the diagnosis of pulmonary embolism
PULMONARY EMBOLISM: computed tomographic pulmonary angiography is the initial imaging modality of choice for stable patients with suspected pulmonary embolism.

CTPA was introduced in the 1990s as an alternative to ventilation/perfusion scanning, which relies on radionuclide imaging of the blood vessels of the lung. It is regarded as a highly sensitive and specific test for pulmonary embolism.

Indications for Pulmonary CT Angiogram
- Clinical, laboratory, or radiologic finding suggestive of PE.
- Cardiac or lung disease excludes nuclear V/Q scan.
- Unsatisfactory V/Q scan, or inconclusive.
- Immediate diagnosis of PE is needed.
- Chest x-ray is not sufficiently clear to perform V/Q scan.
- Pulmonary hypertension secondary to PE.
- Prior history of PE with current symptoms.
PULMONARY EMBOLISM: Lung scintigraphy

with multiple tracers such as xenon-133 gas, Tc-99m-labelled aerosols, or Tc-99m-labelled carbon microparticles (Technegas)

The high-probability criteria are as follows:

- Two large (>75% of a segment) segmental perfusion defects without corresponding ventilation or chest radiographic abnormalities
- One large segmental perfusion defect and 2 moderate (25-75% of a segment) segmental perfusion defects without corresponding ventilation or radiographic abnormalities
- Four moderate segmental perfusion defects without corresponding ventilation or chest radiographic abnormalities
- The intermediate-probability criteria are as follows:
 - One moderate to fewer than 2 large segmental perfusion defects without corresponding ventilation or chest radiographic abnormalities
 - Corresponding V/Q defects and radiographic parenchymal opacity in lower lung zone
 - Single moderate matched V/Q defects with normal chest radiographic findings
 - Corresponding V/Q and chest radiography small pleural effusion
 - Difficult to categorize as normal, low, or high probability

A 74-year-old man comes to the office with a complaint of mild dyspnea on exertion and a dry cough for the past few months. He has a 60-pack-year history of smoking and quit smoking 3 months ago after a transient episode of dyspnea. He has rare wheezing, no hemoptysis, and no orthopnea, and he denies experiencing leg swelling or pain. On examination at the office, the patient has no rales or wheezing and is normotensive. However, his oxygen saturation is 89%. D-dimer level is 802 ng/mL.
PULMONARY EMBOLISM: pulmonary angiography

This angiograph is a localization image that shows placement of the pigtail catheter in the pulmonary artery for selective angiography. The radiograph on the left is the positive image and on the right the negative image.

On the right is a magnified portion of the radiograph showing a large filling defect in a branch of the pulmonary artery, which is a pulmonary embolus (arrows). This patient presented with a clinical history of chest pain, advanced peripheral vascular disease, diabetic smoker, and hypertension.
PULMONARY EMBOLISM: magnetic resonance angiography

Magnetic resonance angiography is performed following intravenous administration of gadolinium.

Emboli in the left and right main pulmonary arteries

Embolus in the left main pulmonary artery

A large pulmonary embolus in the left main branch of the pulmonary artery

http://www.escardio.org/Guidelines-&-Education/Clinical-Practice-Guidelines/Acute-Pulmonary-Embolism-Diagnosis-and-Management-of
PULMONARY EMBOLISM: X-ray

- Thrombus
- Westermark's Sign: Dilatation of Pulmonary Artery Proximal to embolus with collapse of distal vessels with sharp cutoff of vessel contour
- Palla's sign
- Hampton hump

http://www.escardio.org/Guidelines-&-Education/Clinical-Practice-Guidelines/Acute-Pulmonary-Embolism-Diagnosis-and-Management-of
PULMONARY EMBOLISM: Echocardiography

Echo - McConnell’s Sign

Echo - D-Shaped Septum
Paradoxical Septal Motion

Echo - Severe TR - Severe RV Systolic

on depressed contractility of the RV free wall compared with the RV apex
two crossection ultrasound images through the right common femoral vein (CFV) show a large nonocclusive thrombus in the vessel lumen (yellow arrow). The image on the left shows the common femoral vein prior to compression being applied with a large clot within it.
PULMONARY EMBOLISM: ECG

- S1Q3T3 pattern (McGinn-White sign)
- QR pattern in V1
- Inversion of T waves in leads V1 – V4

Uncompleted RBBB

http://www.escardio.org/Guidelines-&-Education/Clinical-Practice-Guidelines/Acute-Pulmonary-Embolism-Diagnosis-and-Management-of
PULMONARY EMBOLISM: differential diagnoses

- Musculoskeletal pain
- Pleuritis
- Pericarditis
- Salicylate intoxication
- Hyperventilation
- Silicone pulmonary embolism
- Lung trauma
- Mediastinitis, acute
 • Sickle cell disease
Suspected PE with shock or hypotension

CT angiography immediately available

No

Echocardiography

RV overload

No

Search for other causes of haemodynamic instability

No other test available or patient unstable

PE-specific treatment: primary reperfusion

Yes

Yes

CT angiography available and patient stabilized

CT angiography

positive

Search for other causes of haemodynamic instability

negative

ESC Guidelines, 2014

http://www.escardio.org/Guidelines-Education/Clinical-Practice-Guidelines/Acute-Pulmonary-Embolism-Diagnosis-and-Management-of
PULMONARY EMBOLISM:

Treatment in the acute phase

- Haemodynamic and respiratory support
- Anticoagulation
- Thrombolytic treatment
- Surgical embolectomy
- Percutaneous catheter-directed treatment
- Venous filters
- Early discharge and home treatment

Haemodynamic and respiratory support

Acute RV failure with resulting low systemic output is the leading cause of death in patients with high-risk PE.

- Use of vasopressors is often necessary, in parallel with (or while waiting for) pharmacological, surgical, or interventional reperfusion treatment. Norepinephrine appears to improve RV function via a direct positive inotropic effect, while also improving RV coronary perfusion by peripheral vascular alpha-receptor stimulation and the increase in systemic BP.
- Vasodilators decrease pulmonary arterial pressure and pulmonary vascular resistance, but the main concern is the lack of specificity of these drugs for the pulmonary vasculature after systemic (intravenous) administration.
- Hypoxaemia is usually reversed with administration of oxygen. When mechanical ventilation is required, care should be taken to limit its adverse haemodynamic effects. In particular, the positive intrathoracic pressure induced by mechanical ventilation may reduce venous return and worsen RV failure in patients with massive PE. Low tidal volumes (approximately 6 mL/kg lean body weight) should be used in an attempt to keep the end-inspiratory plateau pressure <30 cm H2O.
Anticoagulation

In patients with acute PE, anticoagulation is recommended, with the objective of preventing both early death and recurrent symptomatic or fatal VTE. The standard duration of anticoagulation should cover at least 3 months.

Anticoagulation medications include the following:
- Unfractionated heparin
- Low-molecular-weight heparin
- Factor Xa Inhibitors
- Fondaparinux
- Warfarin

Thrombolytic agents used in managing pulmonary embolism include the following:
- Alteplase
- Reteplase
- Urokinase
- Streptokinase

Diagnostic investigations should not delay empirical anticoagulant therapy. Thrombolytic therapy should be used in patients with acute pulmonary embolism who have hypotension (systolic blood pressure < 90 mm Hg) who do not have a high bleeding risk and in selected patients with acute pulmonary embolism not associated with hypotension who have a low bleeding risk and whose initial clinical presentation or clinical course suggests a high risk of developing hypotension. Long-term anticoagulation is critical to the prevention of recurrence of DVT or pulmonary embolism, because even in patients who are fully anticoagulated, DVT and pulmonary embolism can and often do recur.
The first is systemic thrombolysis followed by anticoagulation (shock). The second is catheter-directed thrombolysis.

- Thrombolytic therapy should be used in patients with acute PE associated with hypotension (systolic BP < 90 mm HG), who do not have a high bleeding risk.
- Thrombolytic therapy is suggested in select patients with acute PE not associated with hypotension and with a low bleeding risk whose initial clinical presentation or clinical course after starting anticoagulation suggests a high risk of developing hypotension.
- Assessment of PE severity, prognosis, and risk of bleeding dictate whether thrombolytic therapy should be started. Thrombolytic therapy is not recommended for most patients with acute PE not associated with hypotension.
Thrombolytics

Thrombolysis is indicated for hemodynamically unstable patients with pulmonary embolism. Thrombolysis dramatically improves acute cor pulmonale. Thrombolytic therapy has replaced surgical embolectomy as the treatment for hemodynamically unstable patients with massive pulmonary embolism. Fibrinolytic regimens currently in common use for pulmonary embolism include 2 forms of recombinant tPA, alteplase and reteplase, along with urokinase and streptokinase.

Alteplase usually is given as a front-loaded infusion over 90 or 120 minutes. Urokinase and streptokinase usually are given as infusions over 24 hours or more. Reteplase is a new-generation thrombolytic with a longer half-life; it is given as a single bolus or as 2 boluses administered 30 minutes apart. Reteplase and alteplase are preferred for patients with pulmonary embolism. Streptokinase is least desirable of all the fibrinolytic agents because antigenic problems and other adverse reactions.
Percutaneous catheter-directed treatment

For patients with absolute contraindications to thrombolysis, interventional options include:

(i) thrombus fragmentation with pigtail or balloon catheter,
(ii) rheolytic thrombectomy with hydrodynamic catheter devices,
(iii) suction thrombectomy with aspiration catheters and
(iv) rotational thrombectomy.

On the other hand, for patients without absolute contraindications to thrombolysis, catheter-directed thrombolysis or pharmacomechanical thrombolysis are preferred approaches.
Catheter-directed, Ultrasound-facilitated thrombolysis

Drug delivery catheter

Console

Ultrasound transducers
Fibrin strands: Thick, Tightly Packed

High frequency, low power ultrasound

Fibrin strands: Thin, Spread Out; “Thrombus Conditioning”
Surgical embolectomy

The first successful surgical pulmonary embolectomy was performed in 1924, several decades before the introduction of medical treatment for PE.

Following rapid transfer to the operating room and induction of anaesthesia and median sternotomy, normothermic cardiopulmonary bypass should be instituted. Aortic cross-clamping and cardioplegic cardiac arrest should be avoided. With bilateral PA incisions, clots can be removed from both pulmonary arteries down to the segmental level under direct vision. Prolonged periods of post-operative cardiopulmonary bypass and weaning may be necessary for recovery of RV function.
In patients with high or intermediate clinical probability for PE, parenteral anticoagulation should be initiated whilst awaiting the results of diagnostic tests. Immediate anticoagulation can be achieved with parenteral anticoagulants such as intravenous UFH, subcutaneous low-molecular-weight heparin (LMWH), or subcutaneous fondaparinux. UFH is recommended for patients in whom primary reperfusion is considered, as well as for those with serious renal impairment (creatinine clearance < 30 mL/min), or severe obesity. LMWH or fondaparinux are preferred over UFH for initial anticoagulation in PE.
Heparin major anticoagulant effect by inactivating thrombin and activated factor X (factor Xa) through an antithrombin (AT)-dependent mechanism. Heparin binds to AT through a high-affinity pentasaccharide, which is present on about a third of heparin molecules. For inhibition of thrombin, heparin must bind to both the coagulation enzyme and AT, whereas binding to the enzyme is not required for inhibition of factor Xa.

Unfractionated heparin infusion should be stopped during administration of streptokinase or urokinase.
Available oral anticoagulants include:

- vitamin K antagonists (warfarin),
- direct thrombin inhibitors (dabigatran),
- direct factor Xa inhibitors (rivaroxaban)

Oral anticoagulants should be initiated as soon as possible, and preferably on the same day as the parenteral anticoagulant. VKAs have been the ‘gold standard’ in oral anticoagulation for more than 50 years.

(The image shows red blood cells enmeshed in a fibrinous matrix in the process of clot formation.)
The anticoagulant effect of warfarin is mediated by the inhibition of vitamin K–dependent factors, which are II, VII, IX, and X. The peak effect does not occur until 36-72 hours after drug administration, and the dosage is difficult to titrate. A prothrombin time ratio is expressed as an INR and is monitored to assess the adequacy of warfarin therapy. The recommended therapeutic range for venous thromboembolism is an INR of 2-3. This level of anticoagulation markedly reduces the risk of bleeding without the loss of effectiveness.

Warfarin can be started at a dose of 10 mg in younger (e.g., 60 years of age), otherwise healthy outpatients, and at a dose of 5 mg in older patients and in those who are hospitalized. The daily dose is adjusted according to the INR over the next 5–7 days, aiming for an INR level of 2.0–3.0.
Direct thrombin inhibitors (dabigatran)

Dabigatran etexilate is a competitive reversible non-peptide antagonist of thrombin. Thrombin is a multifunctional enzyme which converts fibrinogen to fibrin, cross-linking fibrin monomers via activation of factor XIII and augmenting further thrombin production via the activation of factors V and VIII. It also activates platelets, generates anticoagulant activity via activation of protein C and initiates numerous cellular processes including wound healing.

Indicated for treatment of deep vein thrombosis (DVT) and pulmonary embolus (PE) in patients who have been treated with a parenteral anticoagulant for 5-10 days. Also indicated to reduce the risk of recurrence of DVT and PE in patients who have been previously treated:

- CrCl >30 mL/min: 150 mg PO BID
- CrCl ≤30 mL/min or on dialysis: Dosage recommendations cannot be provided
- CrCl <50 mL/min with concomitant use of P-gp inhibitors: Avoid co-administration

http://www.escardio.org/Guidelines-&-Education/Clinical-Practice-Guidelines/Acute-Pulmonary-Embolism-Diagnosis-and-Management-of
Direct factor Xa inhibitors (rivaroxaban)

Rivaroxaban is a competitive reversible antagonist of activated factor X (Xa). Factor Xa is the active component of the prothrombinase complex that catalyses conversion of prothrombin (factor II) to thrombin (factor IIa).

CONTRAINDICATIONS:
- Active pathological bleeding
- Severe hypersensitivity reaction

http://www.escardio.org/Guidelines & Education/Clinical Practice Guidelines/Acute Pulmonary Embolism Diagnosis and Management of
Recommended durations of therapy for different clinical situations are as follows:

- First episode of provoked PE - Provide 3 months of anticoagulation
- First episode of nonprovoked PE - Provide 3 months of anticoagulation, then assess the risk of bleeding; if there is a low-to-moderate risk of bleeding, provide anticoagulation indefinitely
- Recurrence of PE - Provide 3 months of anticoagulation, then reassess; if there is a low-to-moderate risk of bleeding, provide anticoagulation indefinitely
Therapy of low risk PE

Rivaroxaban / Apixaban

Dabigatran / Edoxaban

Acute Intermediate term Long term

Initial Early maintenance Prolonged / long term maintenance
Anticoagulation
ADVANCED PE THERAPIES

1. **Systemic** full-dose thrombolysis: 100 mg/2h TPA (FDA: 1990)
 Tenecteplase (PEITHO): (NEJM 2014)

2. **Catheter-directed**, Ultrasound-facilitated thrombolysis ≤ 24 mg TPA
 (ULTIMA: Circulation 2014; 129: 479)
 (SEATTLE II: JACC CV Intervent 2015)

3. Open surgical embolectomy

4. IVC Filter
Vena Cava Filters

The current grade 1B recommendation is that patients with acute PE should not routinely receive vena cava filters in addition to anticoagulants. An ideal IVC filter should be easily and safely placed using a percutaneous technique, biocompatible and mechanically stable, and able to trap emboli without causing occlusion of the vena cava.

INDICATED FOR:

- Patients with acute venous thromboembolism who have an absolute contraindication to anticoagulant therapy (eg, recent surgery, hemorrhagic stroke, significant active or recent bleeding)
- Patients with massive PE who survived but in whom recurrent embolism invariably will be fatal
- Patients who have objectively documented recurrent venous thromboembolism, adequate anticoagulant therapy notwithstanding

http://www.cscardiocg.org/Guidelines-Education/Clinical-Practice-Guidelines/Acute-Pulmonary-Embolism-Diagnosis-and-Management-of
Supportive Care

Compression stockings

For patients who have had a proximal DVT, the use of elastic compression stockings provides a safe and effective adjunctive treatment that can limit postphlebitic syndrome. Stockings with a pressure of 30-40 mm Hg at the ankle, worn for 2 years following diagnosis, are recommended (grade 2B) to reduce the risk of postphlebitic syndrome.

Additional support therapies

- Dopamine and dobutamine are the usual inotropic agents.
- Mechanical ventilation may be necessary to provide respiratory support and as adjunctive therapy for a failing circulatory system.
- Transfusion with packed red blood cells (either simple or exchange) improves oxygenation immediately.
- IV fluids may help or may hurt the patient who is hypotensive.

http://www.escardio.org/Guidelines-&-Education/Clinical-Practice-Guidelines/Acute-Pulmonary-Embolism-Diagnosis-and-Management-of
Pulmonary Embolism in Pregnancy

The risk of venous thromboembolism is increased during pregnancy and the postpartum period. Pulmonary embolism is the leading cause of death in pregnancy. DVT and pulmonary embolism are common during all trimesters of pregnancy and for 6-12 weeks after delivery.

• The diagnostic approach to patients with pulmonary embolism should be exactly the same in a pregnant patient as in a nonpregnant one.
• A nuclear perfusion lung scan is safe in pregnancy, as is a chest CT scan.
• If the patient has a low pretest probability for pulmonary embolism and a normal D-dimer test result, clinical exclusion from further investigations is recommended.
• When the suspicion is high, the patients should have bilateral leg Doppler assessment.
• If the results are negative, CT pulmonary angiography is the next step.
• **Heparin and fibrinolysis** are safe in pregnancy. Warfarin is contraindicated, because it crosses the placental barrier.
• Therapeutic treatment with unfractionated heparin or LMWH during pregnancy, with anticoagulation continuing for 4-6 weeks postpartum and for a total of at least 6 months.

• Pregnant women who are in a hypercoagulable state or who have had previous venous thromboembolism - prophylactic anticoagulation during pregnancy.
Complications of PE

- Sudden cardiac death
- Obstructive shock
- Pulseless electrical activity
- Atrial or ventricular arrhythmias
- Secondary pulmonary arterial hypertension
- Cor pulmonale

- Severe hypoxemia
- Right-to-left intracardiac shunt
- Lung infarction
- Pleural effusion
- Paradoxical embolism
- Heparin-induced thrombocytopenia
- Thrombophlebitis
Chronic thromboembolic pulmonary hypertension has been reported to be a long-term complication of PE, with a reported cumulative incidence of 0.1–9.1% within the first two years after a symptomatic PE event. Inadequate anticoagulation, large thrombus mass, residual thrombi, and recurrence of VTE can lead to a pulmonary vascular remodelling process modified by infection, inflammation, circulating and vascular-resident progenitor cells, thyroid hormone replacement, or malignancy. Hypercoagulation, ‘sticky’ red blood cells, high platelet counts, and ‘uncleavable’ fibrinogen, pulmonary microvascular disease can further develop into CTEPH.
The diagnosis of CTEPH is based on findings obtained after at least 3 months of effective anticoagulation, in order to discriminate this condition from ‘sub-acute’ PE. These findings are:
† mean pulmonary arterial pressure ≥25 mm Hg, with pulmonary arterial wedge pressure ≤15 mm Hg;
† at least one (segmental) perfusion defect detected by perfusion lung scan, or pulmonary artery obstruction seen by MDCT angiography or conventional pulmonary cineangiography.
Pulmonary endarterectomy (PEA) is the treatment of choice for the disease. Patients who do not undergo surgery, or suffer from persistent or residual pulmonary hypertension after PEA, face a poor prognosis. Advances in balloon pulmonary angioplasty are continuing in an attempt to make this technique a therapeutic alternative for selected patients with non-operable CTEPH.
CLINICAL CASE
In the ECG shown in the slide, what are the findings on leads I and III, and what is their relevance to PE?
Answer: The key findings on these two leads are an S wave on lead I and Q waves with T-wave inversion on lead III (S1Q3T3). The common ECG changes seen in acute PE are as follows:

- Nonspecific T-wave and ST-segment changes in 70% of cases[4]
- Right ventricular strain, strain including new incomplete right bundle-branch block (RBBB) and S1Q3T3, in 10% of cases[5]
- Poor prognostic ECG signs, including new RBBB, atrial fibrillation (AF), bradycardia, inferior Q-waves, anterior ST-segment changes, and T-wave inversions[6]
CT venography reveals the presence of deep vein thrombosis (DVT) in the right leg. The patient's BP declines again to 89/62 mm Hg, and her heart rate is now 110 beats/min. Her oxygen saturation is 92%.
DIAGNOSIS?

Acute massive unstable Pulmonary Embolism
(unstable when systolic BP remains below 90 mm Hg for more than 15 minutes or when vasopressors are required)

TREATMENT OPTIONS?
The treatment options for hemodynamically unstable PE consist of thrombolysis and thrombectomy.
Thrombectomy was performed
Goodbye!